SAN_666
Ну хорошо, ну предположим, что иностранные спецслужбы, предположительно американские, убедили вас, что метод Кантора неправильный. Ну дык это далеко не единственный способ доказательства континуальности множества действительных чисел.
Допустим, рассуждение с теоремой Бэра (всякое счетное множество в

является множеством первой категории, а отрезок
![$[0,1]$ $[0,1]$](https://dxdy-03.korotkov.co.uk/f/a/c/f/acf5ce819219b95070be2dbeb8a671e982.png)
таковым не является) вас тоже не убедит, так как при доказательстве теоремы Бэра используется подход, чем-то напоминающий метод Кантора.
Но рассуждение с мерой Лебега (всякое счетное множество имеет нулевую меру Лебега, а отрезок
![$[0,1]$ $[0,1]$](https://dxdy-03.korotkov.co.uk/f/a/c/f/acf5ce819219b95070be2dbeb8a671e982.png)
имеет меру

) в этом смысле совершенно безупречно.