2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 5, 6, 7, 8, 9
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 16:02 
Заслуженный участник
Аватара пользователя


26/01/14
4856
wrest в сообщении #1185441 писал(а):
Это или неверно, или описка. Что значит "обнаружить другого ребенка девочкой" -- какого "другого", а "первый" что, уже "обнаружен"?

Неверно как раз у Вас.
Сказать "в семье есть мальчик" - то же самое, что сказать "неверно, что в семье две девочки".
Это исключает вариант ЖЖ, а три оставшихся варианта как были равновероятными, так и остаются.
$$
P(MM\,|\,\exists M)=\frac{P(MM)}{P(\exists M)}=\frac{1/4}{3/4}=\frac{1}{3}.
$$
$$
P(MW\,|\,\exists M)=\frac{P(MW)}{P(\exists M)}=\frac{1/4}{3/4}=\frac{1}{3}.
$$
$$
P(WM\,|\,\exists M)=\frac{P(WM)}{P(\exists M)}=\frac{1/4}{3/4}=\frac{1}{3}.
$$

-- 17.01.2017, 16:03 --

(Оффтоп)

DmitriyMalakhov в сообщении #1185443 писал(а):
Хотя, цитата не моя, которую вы привели,
Извините, исправил.

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 16:24 
Аватара пользователя


22/07/08
1416
Предместья
DmitriyMalakhov в сообщении #1185432 писал(а):
Вот решение , если вам сказали, что в семье есть Коля, то вероятность, что в семье есть еще один мальчик. То есть если $p\;0$ (имен много) то эта вероятность стремится к $\frac {1}{2}$

Я эту фигуру речи понял так, что если у одного ребенка есть хоть какое-нибудь имя, значит с вероятностью $\frac{1}{2}$ в семье есть еще один мальчик.
Если у одного мальчика имени нет вообще, то наличие еще одного мальчика будет иметь вероятность $\frac{1}{3}$
Я правильно понял?!

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 16:28 


05/09/16
12115
DmitriyMalakhov в сообщении #1185432 писал(а):
В предыдущем посте я посчитал вероятность через байеса и получается формула Вероятность второго мальчика, при условии, что в семье есть Коля (вероятность имени коля р)

Вы всерьез полагаете, что если у вас есть таблица с вероятностями имен Коли, Васи, Пети и так далее, то когда вы будете спрашивать "если у вас двое детей, то есть ли среди них Коля/Вася/Петя?", для семей ответивших "да" на какой-то из вопросов, вероятность второго ребенка девочки для первого Коли, Васи и Пети будет различаться?!

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 16:35 


14/01/17
33
Лукомор в сообщении #1185446 писал(а):
DmitriyMalakhov в сообщении #1185432 писал(а):
Вот решение , если вам сказали, что в семье есть Коля, то вероятность, что в семье есть еще один мальчик. То есть если $p\;0$ (имен много) то эта вероятность стремится к $\frac {1}{2}$

Я эту фигуру речи понял так, что если у одного ребенка есть хоть какое-нибудь имя, значит с вероятностью $\frac{1}{2}$ в семье есть еще один мальчик.
Если у одного мальчика имени нет вообще, то наличие еще одного мальчика будет иметь вероятность $\frac{1}{3}$
Я правильно понял?!



Зачем вы пытаетесь переформулировать то что написано? Вас попросили найти ошибки в решении или дать свое решение задач.

Вы же сами понимаете, что не правильно поняли. Зачем что то домысливать? Опровергните решение задач или дайте свое, именно тех задач, которые были сформулированы, а не своих условий.

-- 17.01.2017, 17:39 --

wrest в сообщении #1185447 писал(а):
DmitriyMalakhov в сообщении #1185432 писал(а):
В предыдущем посте я посчитал вероятность через байеса и получается формула Вероятность второго мальчика, при условии, что в семье есть Коля (вероятность имени коля р)

Вы всерьез полагаете, что если у вас есть таблица с вероятностями имен Коли, Васи, Пети и так далее, то когда вы будете спрашивать "если у вас двое детей, то есть ли среди них Коля/Вася/Петя?", для семей ответивших "да" на какой-то из вопросов, вероятность второго ребенка девочки для первого Коли, Васи и Пети будет различаться?!


Вас попросили опровергнуть решение или привести свое.
То, что я полагаю я вам уже написал(решения ), а то как вы его переформулировали я за это не отвечаю.
Не согласны с решением - скажите где или приведите свое решение.

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 16:39 
Заслуженный участник
Аватара пользователя


26/01/14
4856
Лукомор в сообщении #1185446 писал(а):
Я эту фигуру речи понял так, что если у одного ребенка есть хоть какое-нибудь имя, значит с вероятностью $\frac{1}{2}$ в семье есть еще один мальчик.
Если у одного мальчика имени нет вообще, то наличие еще одного мальчика будет иметь вероятность $\frac{1}{3}$
Я правильно понял?!
wrest в сообщении #1185447 писал(а):
Вы всерьез полагаете, что если у вас есть таблица с вероятностями имен Коли, Васи, Пети и так далее, то когда вы будете спрашивать "если у вас двое детей, то есть ли среди них Коля/Вася/Петя?", для семей ответивших "да" на какой-то из вопросов, вероятность второго ребенка девочки для первого Коли, Васи и Пети будет различаться?!

1) Спросим каждую двудетную семью: есть ли в вашей семье Коля? Среди ответивших "да", в половине семей второй ребёнок - девочка.
2) Спросим каждую двудетную семью: есть ли в вашей семье Вася? Среди ответивших "да", в половине семей второй ребёнок - девочка.
3) Спросим каждую двудетную семью: есть ли в вашей семье Петя? Среди ответивших "да", в половине семей второй ребёнок - девочка.
...

0) Однако. Спросим каждую двудетную семью: есть ли в вашей семье мальчик? Среди ответивших "да", в двух третьих семей второй ребёнок - девочка.

Конечно, каждый мальчик - это либо Коля, либо Вася, либо Петя, либо... другие имена. С этим никто не спорит.
И если бы все двудетные семьи с мальчиком строго делились на классы: двудетные семьи с Колей, двудетные семьи с Васей, двудетные семьи с Петей, ... - то на вопрос 0) был бы тот же ответ, что и на вопросы 1, 2, 3, ... .
Беда в том, что такого деления на классы нет. Одна и та же семья с мальчиком может попасть в два класса одновременно: в семьи с Петей и семьи с Васей например. Если в этой семье есть и Петя, и Вася.
Отсюда и различие в ответах.

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 16:53 


05/09/16
12115
Mikhail_K в сообщении #1185445 писал(а):
Это исключает вариант ЖЖ, а три оставшихся варианта как были равновероятными, так и остаются.

Конечно, но равновероятными они остаются только до того момента, когда мы начинаем говорить о "втором" или "другом ребенке". То есть, если мы исключили семьи с двумя девочками, то у нас остались семьи ММ ЖМ и МЖ, и выбрав из этих семей ребенка наугад (заметьте, не "другого" ребенка, а любого наугад) мы получим с вероятностью $1/3$ девочку и $2/3$ - мальчика.
Для того, чтобы говорить о "другом" (или "втором", что эквивалентно) ребенке, надо сперва детей пронумеровать. Пронумеруем их так, что буква слева это первый ребенок а буква справа -- второй ("другой"). Тогда из семей ММ МЖ и ЖМ надо исключить семью ЖМ, потому что не смотря на то что "другой" ребенок в ней мальчик, первый им НЕ является. Тогда вероятность "другого" ребенка $1/2$ как для мальчика так и для девочки. Если же мы говорим что нумерация нам не важна, то надо к семьям ММ МЖ и МЖ наоборот, добавить еще одну семью ММ, и тогда для второго ("другого") ребенка вероятность будет опять же $1/2$

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 16:57 
Заслуженный участник
Аватара пользователя


26/01/14
4856
wrest в сообщении #1185453 писал(а):
Конечно, но равновероятными они остаются только до того момента, когда мы начинаем говорить о "втором" или "другом ребенке".
Вы с Лукомором ошибаетесь, но я исчерпал возможности показать вам это. Я уже писал:
Mikhail_K в сообщении #1185442 писал(а):
"Один из детей мальчик" - это "хотя бы один из детей мальчик".
Когда родителей спрашивают "Правда ли, что один из ваших детей - мальчик?" - они при ответе не фиксируют, о ком речь.
Когда им задают и второй вопрос "Правда ли, что другой ребёнок девочка?" то вот тогда им приходится фиксировать, о каком ребёнке шла речь в первом вопросе (если мальчиков два, то у них есть выбор). Но ответ всё равно не зависит от их выбора.
"Другой ребёнок девочка" - это значит, в семье один мальчик, одна девочка.
"Другой ребёнок тоже мальчик" - это значит, в семье два мальчика.
Любое другое толкование неадекватно.

Из дискуссии выхожу, потому что сказал всё, что могло быть сказано.

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 20:17 
Аватара пользователя


08/08/14

991
Москва
А на компе не пробовали?

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 20:43 


14/01/17
33
levtsn в сообщении #1185493 писал(а):
А на компе не пробовали?


Если имеется в виду симуляция, то нет не пробовал

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 21:09 
Аватара пользователя


22/07/08
1416
Предместья
Я вот тут прикинул, в самом общем виде...
---
Для того, чтобы в семье из двух детей гарантированно был хотя бы один мальчик, необходимо и достаточно, чтобы один из детей был мальчиком с вероятностью $p$, где $\frac{1}{3}\leqslant p\leqslant 1$ либо девочкой с вероятностью $q=1-p$, где $0\leqslant q\leqslant \frac{2}{3}$, при этом, второй ребенок будет мальчиком с вероятностью $p^\prime=\frac{4}{3}-p$, или девочкой, с вероятностью $q^\prime=\frac{2}{3}-q$.
Из того факта, что в семье из двух детей хотя бы один - мальчик, невозможно найти единственное значение вероятности $p$ из интервала $\frac{1}{3}\leqslant p\leqslant 1$, и связанных с нею линейно вероятностей $q, p^\prime, q^\prime$.
Указанное условие: "хотя бы один мальчик в семье из двух детей" - выполняется для любого значения $p$ из указанного интервала $\frac{1}{3}\leqslant p\leqslant 1$.
---
Проверка:
Первое решение из стартового сообщения (либо третий пример Лукомора) получается при $p=1, q=0$,
откуда $p^\prime=\frac{1}{3}, q^\prime=\frac{2}{3}$.
Второе решение из стартового сообщения (либо второй пример Лукомора) получается при $p=\frac{5}{6}, q=\frac{1}{6}$,
откуда $p^\prime=\frac{1}{2}, q^\prime=\frac{1}{2}$.
Первый пример Лукомора получается при $p=\frac{2}{3}, q=\frac{1}{3}$,
откуда $p^\prime=\frac{2}{3}, q^\prime=\frac{1}{3}$.

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 21:37 
Аватара пользователя


26/05/12
1700
приходит весна?
DmitriyMalakhov в сообщении #1184667 писал(а):
В чем подвох не пойму?

Может быть подвох в том, что в семье может быть два мальчика, но не может быть два Коли?

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 21:40 


14/01/17
33
Лукомор в сообщении #1185515 писал(а):
Я вот тут прикинул, в самом общем виде...
---
Для того, чтобы в семье из двух детей гарантированно был хотя бы один мальчик, необходимо и достаточно, чтобы один из детей был мальчиком с вероятностью $p$, где $\frac{1}{3}\leqslant p\leqslant 1$ либо девочкой с вероятностью $q=1-p$, где $0\leqslant q\leqslant \frac{2}{3}$, при этом, второй ребенок будет мальчиком с вероятностью $p^\prime=\frac{4}{3}-p$, или девочкой, с вероятностью $q^\prime=\frac{2}{3}-q$.
Из того факта, что в семье из двух детей хотя бы один - мальчик, невозможно найти единственное значение вероятности $p$ из интервала $\frac{1}{3}\leqslant p\leqslant 1$, и связанных с нею линейно вероятностей $q, p^\prime, q^\prime$.
Указанное условие: "хотя бы один мальчик в семье из двух детей" - выполняется для любого значения $p$ из указанного интервала $\frac{1}{3}\leqslant p\leqslant 1$.
---
Проверка:
Первое решение из стартового сообщения (либо третий пример Лукомора) получается при $p=1, q=0$,
откуда $p^\prime=\frac{1}{3}, q^\prime=\frac{2}{3}$.
Второе решение из стартового сообщения (либо второй пример Лукомора) получается при $p=\frac{5}{6}, q=\frac{1}{6}$,
откуда $p^\prime=\frac{1}{2}, q^\prime=\frac{1}{2}$.
Первый пример Лукомора получается при $p=\frac{2}{3}, q=\frac{1}{3}$,
откуда $p^\prime=\frac{2}{3}, q^\prime=\frac{1}{3}$.



слишком толсто тролите.
Хотя, если рассмотреть это как ложный посыл, то вы правы.

-- 17.01.2017, 22:42 --

B@R5uk в сообщении #1185527 писал(а):
DmitriyMalakhov в сообщении #1184667 писал(а):
В чем подвох не пойму?

Может быть подвох в том, что в семье может быть два мальчика, но не может быть два Коли?


Да даже если будет два Коли в семье, ответ от этого не изменится

 Профиль  
                  
 
 Re: Задача о двух детях, запутался
Сообщение17.01.2017, 22:21 


20/03/14
12041
Лукомор
Лукомор в сообщении #1185515 писал(а):
Для того, чтобы в семье из двух детей гарантированно был хотя бы один мальчик, необходимо и достаточно

Что за чушь в учебном разделе.

 !  DmitriyMalakhov
Предупреждение за игнорирование требования модератора о корректном оформлении цитирования (оверквотинг), недопустимые методы дискуссии (постоянные обвинения в троллинге и требования предъявить свое решение, что противоречит правилам раздела) и нежелание прислушаться к доводам собеседников.


В частности, Mikhail_K многими способами привел требуемое объяснение, и столько же раз оно было проигнорировано.

Ввиду непродуктивности диспута тема закрывается. Неудовлетворенные могут ознакомиться с более удачной версией. «Второй ребёнок в теории вероятностей.»

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 133 ]  На страницу Пред.  1 ... 5, 6, 7, 8, 9

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group