PAV писал(а):
Вот похожая аналогия: для заданного рассмотрим два множества - множество всех натуральных чисел от
до
и множество всех четных чисел (от
до
- Someone). С ростом объемы этих множеств различаются все сильнее и сильнее. Однако "для бесконечного " (т.е. для всех натуральных чисел) множества "вдруг" оказываются равномощными. Это нормально.
juna писал(а):
Они оказываются равномощными, потому что между ними можно установить биекцию. А как установить биекцию между пусто и тем, что может стать таковым (а может и не стать) в потенции.
juna, Вы не замечаете в своих словах двойного подхода?
В случае с равномощностью множества натуральных чисел и множества чётных натуральных чисел Вы сравниваете только "предельные" множества, но не сравниваете "допредельные", а "допредельные" множества не равномощны ни друг другу, ни "предельным" множествам.
В случае же задачи Литлвуда Вы почему-то хотите, чтобы "допредельное" множество было равномощно "предельному".
shwedka писал(а):
PAV писал(а):
А тут ответа и нет, похоже. Ситуация аналогична пределу последовательности
Я бы так сказать не рискнула. Для последовательностей мы сначала вводим понятие предела, а потом проверяем условия этого определения для
. С шариками у нас нет никакого определения. Фактически, в исходном примере мы произвольным образом, молчаливо, приняли за ответ
, не сказав громко, что мы так будем поступать всегда. У нас нет общего определения, которое мы для каждой новой модели игры могли бы проверять. Оставляется место для интуиции, а это очень плохо.
Рассмотрим общий процесс такого рода, в котором имеется множество шагов, занумерованных натуральными числами. Этот процесс мы рассматриваем как процесс построения некоторого множества путём пошагового добавления и удаления элементов.
Чтобы выяснить, что за множество получится в результате такого построения, нужно проследить судьбу каждого конкретного элемента, участвующего в построении, с учётом того, что один и тот же элемент может неоднократно добавляться и удаляться.
Начинаем с пустого множества.
Естественно считать, что если некоторый элемент был добавлен на каком-то шаге, а на последующих шагах не удалялся, то он принадлежит построенному множеству.
Также естественно считать, что если некоторый элемент был удалён на некотором шаге, а на последующих шагах не добавлялся, то он не принадлежит построенному множеству.
Если же некоторый элемент добавлялся и удалялся для бесконечной последовательности шагов, то его судьба является неопределённой, и мы не имеем "интуитивно ясных" оснований, чтобы определить, принадлежит он построенному множеству или не принадлежит. В этом случае естественно считать, что наш процесс никакого множества не строит. Либо принять для данного случая какое-то специальное определение, которое не будет выглядеть "интуитивно ясным".
Подытоживая, можно сказать, что, если каждый элемент, участвующий в процессе, добавляется и удаляется только конечное число раз, то результатом процесса является множество
Никакого предельного перехода здесь, как легко видеть, не наблюдается.
Применяя эти рассуждения к задаче Литлвуда, легко увидеть, что множество
не будет содержать ни одного элемента, то есть, будет пустым.
Если обозначить
множество, построенное в рассматриваемом процессе на
-ном шаге, то, при соблюдении указанного выше условия, будут выполняться равенства
то есть,
Несмотря на употребление обозначения и термина "предел", я не склонен усматривать здесь какой-либо предельный переход, поскольку все эти "пределы" являются просто комбинациями операций объединения и пересечения, которые никаких предельных переходов ни в каких случаях не предполагают.
Для того, чтобы говорить о предельном переходе, мы должны определить топологию (или хотя бы множество сходящихся последовательностей) на множестве подмножеств множества элементов, (потенциально) участвующих в процессе. Нужно хорошо понимать, что топологий можно определить очень много, и что предел последовательности
будет существенно зависеть от выбранной топологии. Более того, этот предел, вообще говоря, не имеет отношения к "судьбе" конкретных элементов в процессе построения множеств
,
.