Удивился, когда пару лет назад узнал, что
существуют многочлены, множество положительных значений которых при неотрицательных (целых — svv) значениях переменных совпадает с множеством простых чисел
Например, полином Джонса 25 степени от 26 переменных (можно увидеть там же). Оговорка, что значение полинома будет простым числом, если оно будет положительным при неотрицательных значениях всех 26 переменных, в то время не показалась существенной. Так, небольшое неудобство, особенность функционирования девайса. Главное, что покрывается всё множество простых чисел.
Но оказывается, что с поиском аргументов, обеспечивающих положительные значения полинома, большие проблемы:
Я его тут погонял со случайными аргументами. По несколько миллионов из 0…999, 0…9, 0…4, 0…2, 0…999 999 999 и ещё некоторых интервалов. Ноль положительных значений. Это показывает просто и прямо, что ничем не приправленный перебор практически бессмыслен.
Вы думаете, что направленный перебор будет более осмысленным? Лично я сомневаюсь, что когда-нибудь человечество сможет указать конкретный набор переменных (хотя бы один), при которых полином Джонса примет хоть какое-нибудь положительное значение.
И это уже потрясло.