2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8, 9  След.
 
 Re: Помогите со школьными задачками
Сообщение22.07.2015, 09:25 
Заслуженный участник


28/12/12
7944
Atom001 в сообщении #1039178 писал(а):
Поэтому я здесь останавливаюсь, чтобы спросить: той ли дорогой я иду?

Есть изящный обходной путь.
Пусть вначале тело движется по окружности радиуса $R$ (скорость, соответственно, равна первой космической для данного расстояния). Теперь придадим телу некоторую добавку скорости вдоль радиуса. Момент импульса при этом не изменяется.
Дальше нужно показать, что при повороте на один и тот же угол изменение скорости на получившейся орбите будет такое же, как на исходной круговой. Кроме того, перицентр (апоцентр) соответствуют повороту на $90^\circ$.
Дальше параметр орбиты - это просто радиус исходной окружности, а эксцентриситет просто выражается через исходную скорость и добавку. Остается перейти к энергии и моменту импульса.

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение23.07.2015, 14:35 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
DimaM в сообщении #1039403 писал(а):
Дальше нужно показать, что при повороте на один и тот же угол изменение скорости на получившейся орбите будет такое же, как на исходной круговой.

В первом случае (движение по окружности) всё просто: изменение скорости сонаправлено с ускорением. Модуль можно вычислить по формуле $dv=adt=\frac{F}{m}dt=\frac{GM}{R^2}dt$.

Во втором случае (движение по эллипсу) всё сложнее: изменение скорости здесь всё также сонаправлено с ускорением, но модуль вычисляется так $dv=dadt=\frac{dF}{m}dt=\frac{GM}{(dR)^2}dt$.

Может быть я не так Вас понял и делаю совсем не то?

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение23.07.2015, 14:53 
Заслуженный участник


28/12/12
7944
Atom001 в сообщении #1039818 писал(а):
но модуль вычисляется так

Модуль вычисляется так же. Но нужно связать изменение скорости и угол поворота радиус-вектора.
Можно подсмотреть здесь, начиная со страницы 90 (раздел 6.4). Хотя лучше, наверно, главу 6 с начала.

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение23.07.2015, 16:51 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
DimaM в сообщении #1039824 писал(а):
Можно подсмотреть здесь
, начиная со страницы 90 (раздел 6.4). Хотя лучше, наверно, главу 6 с начала.

Спасибо, я прочитаю главу.

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение24.07.2015, 19:11 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
DimaM в сообщении #1039824 писал(а):
Модуль вычисляется так же. Но нужно связать изменение скорости и угол поворота радиус-вектора.
Можно подсмотреть здесь
, начиная со страницы 90 (раздел 6.4). Хотя лучше, наверно, главу 6 с начала.

Ну, собственно, я прочитал и теперь подобные задачи решать могу.
Вроде бы всё понятно, хотя остаётся какое-то чувство пустоты. Приведённое Вами пособие, как мне кажется, тезисное - даются основные моменты почти в виде фактов.

А вообще, есть ведь такая дисциплина, как "Небесная механика". Мне кажется, будет полезным ознакомиться с ней сейчас, когда я изучаю курс школьной астрономии. Но мне нужно что-то простое, где только самые основы (потому как сильно углубляться в небесную механику не хочется). Может ли кто-нибудь посоветовать соответствующую литературу?

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение24.07.2015, 19:32 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Есть популярная книжка
Липунов. В мире двойных звезд. (Библиотечка Квант - 52)
Там в первой главе неплохое введение в небесную механику двух тел, мне кажется. Для школьника, конечно.

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение24.07.2015, 19:34 
Заслуженный участник
Аватара пользователя


23/07/05
17987
Москва
В.И.Левантовский. Механика космического полёта в элементарном изложении. "Наука", Москва, 1974.

В.В.Белецкий. Очерки о движении космических тел. "Наука", Москва, 1972.

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение24.07.2015, 19:46 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
Munin
Спасибо!

Someone
Спасибо!

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение25.07.2015, 20:55 
Аватара пользователя


28/01/12
467

(Оффтоп)

DimaM в сообщении #1039824 писал(а):
Можно подсмотреть здесь
Маленькая информация o указанной выше ссылке:
Курс лекций для ФМШ - ВВЕДЕНИЕ КИНЕМАТИКА А. П. Ершов.
Как коротко и хорошо написано о фиктивных силах в неинерциональных системах отсчёта - ну супер.
Ну почему в обычной школе, в учебниках так не писали.

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение26.07.2015, 09:37 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
Задача №6.
Цитата:
У межпланетных станций "Марс-2" и "Марс-3" минимальные удаления от поверхности Марса и периоды обращения соответственно составляли $1380$ и $1500$ $\text{км}$ и $18$ $\text{ч}$ и $11$ $\text{сут}$. Каково было максимально удаление спутников от поверхности Марса.

Задача простая, но почему-то не получается.
1) Для эллиптической орбиты спутников справедливо следующее соотношение $\frac{H_p+2R_{\mars}+H_a}{2}=a$, где $H_p$ - наименьшая высота спутника над поверхностью, $H_a$ - наибольшая высота спутника над поверхностью, $R_{\mars}$ - радиус Марса, $a$ - большая полуось орбиты спутника.
Отсюда найдём наибольшую высоту $H_a=2a-H_p-2R_{\mars}$.
2) Сравним движение спутников с движением, например, Фобоса. Тогда по третьему закону Кеплера $\frac{T^2}{{T_f}^2}=\frac{a^3}{{a_f}^3}$, где всё без индексов принадлежит искусственному спутнику, а всё с индексом $f$ принадлежит Фобосу.
Найдём отсюда большую полуось спутника $a=a_f\sqrt[3]{(\frac{T}{T_f})^2}$.

Подставим числа для "Марса-2" $a=9377.2 \text{ km} \sqrt[3]{(\frac{18 \text{ h}}{7.65 \text{ h}})^2}=16588.3 \text{ km}$

3) Подставим числа в первую формулу $H_a=2\cdot 16588.3 \text{ km} - 1380 \text{ km} - 2\cdot 3390 \text{ km} = 25017 \text{ km}$.
Такой ответ сильно завышен. Где я ошибаюсь?

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение26.07.2015, 12:05 
Заслуженный участник


09/05/12
25179
Atom001 в сообщении #1040585 писал(а):
Такой ответ сильно завышен. Где я ошибаюсь?
А почему, собственно, Вы решили, что он сильно завышен? Все правильно, у него такая высота в апоцентре и была.

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение26.07.2015, 13:21 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
Pphantom в сообщении #1040600 писал(а):
А почему, собственно, Вы решили, что он сильно завышен?

Потому что автор даёт много меньший ответ - 8140 км.

Pphantom в сообщении #1040600 писал(а):
Все правильно, у него такая высота в апоцентре и была.

Да, действительно. В Википедии указано весьма близкое к полученному мной значение.
Тогда вопрос снимается. Спасибо!

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение26.07.2015, 13:24 
Заслуженный участник


09/05/12
25179
Atom001 в сообщении #1040620 писал(а):
Потому что автор даёт много меньший ответ - 8140 км.
Скорее всего, просто опечатка.

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение26.07.2015, 13:32 
Аватара пользователя


13/02/13
777
♍ — ☉ — ⊕
Pphantom в сообщении #1040622 писал(а):
Скорее всего, просто опечатка.

Возможно. Но для Марса-3 автор указал 91 020 км, а Википедия на этот счёт говорит - 211 400 км.

 Профиль  
                  
 
 Re: Помогите со школьными задачками
Сообщение26.07.2015, 14:22 
Заслуженный участник


09/05/12
25179
Atom001 в сообщении #1040624 писал(а):
Возможно. Но для Марса-3 автор указал 91 020 км, а Википедия на этот счёт говорит - 211 400 км.
А кто автор? :wink:

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 125 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8, 9  След.

Модераторы: photon, whiterussian, Jnrty, Aer, Парджеттер, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group