vek88,
Только я так и не понял, где та самая формальная система, из которой по формальным правилам можно вывести почти все остальное... Если эта система есть, то как, для примера, вводятся функция sin, понятие интеграла, случайная величиная, комплексная переменная? У меня не получается из формальной системы, которую предложил Гилберт и Ко, сделать такой формальный вывод...
У меня тоже. Не то, что синус, дык я даже обычных свойств действительных чисел не могу вывести из "формальной системы, которую предложил Гилберт и Ко".
Может быть, уважаемый
epros сможет это сделать?
(
1) Я не понял содержание ответа. Это проблемы только формальной системы Гилберта с Бернайсом? Или же у всех примерно одно и то же? Или мы просто не умеем этим пользоваться?
(
2) Есть еще вопросы «типов». И есть множество аксиоматических систем вплоть до определения действительных чисел и теории вероятности. Они, эти аксиоматические системы, определяются на тех самых «основаниях математики» или создаются сами по себе как-то сбоку, а потом скрещиваются друг с другом как яблоня с березой?
(
3) Повторюсь, но я просто пытаюсь представить, из какой такой формальной системы выводится почти все в современной математике.
1. Да, 100 лет назад Гильберт думал, что надежное обоснование математики возможно на основе
финитных формальных систем.
Однако, как принято говорить, надеждам Гильберта не суждено было сбыться. Виновником этого оказался Гедель.
Теорема Геделя о неполноте арифметики показала, что не то, что математика, а даже ее элементарный раздел -
арифметика - не может быть формализован в
финитных формальных системах. Грубо говоря, мы можем формализовать арифметику в таких системах лишь "частично" - причем как бы мы ни усовершенствовали формализацию, всегда какая-то часть арифметики останется вне нашей формализации.
2. Вообще то ИМХО задачу аксиоматизации всей математики в рамках финитных систем никто не ставил. И понятно почему. Это, прежде всего, исключительно трудоемко. Представьте себе, что Вам поручили написать оригинальный курс матанализа - Вы ведь не сможете написать его и за год.
Кроме того, здесь, в определенном смысле, все не так как всегда. В результате Вас просто не поймут.
Хотите пример? Смотрите понятие конструктивного действительного числа в конструктивном анализе.
3. А вот какую задачу действительно ставили - эту аксиоматизация теории множеств. Смысл понятен. Поскольку понятие множества лежит в основе математических построений, вот эту основу и хотят поставить на надежное основание. В результате было построено несколько аксиоматизаций теории множеств - см. в Википедии.
Мой взгляд на весь этот огород, если кратко, состоит в следующем. В финитных формальных системах обосновать математику в принципе невозможно. А вот в подходящих нефинитных формальных системах (полные К-системы или
-множества) все прекрасно. И даже наивная теория множеств Кантора прекрасно себя чувствует. Если, конечно, не давать некорректных определений, т.е. определений, нарушающих полноту К-систем. Простейший путь избежать некорректных определений - держаться подальше от циклических определений и/или цепочек определений.
Но и при нарушении полноты ничего страшного не случится - мы просто выйдем за пределы классической двузначной логики.
Подробности см. выше в этой теме.