2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19 ... 22  След.
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 20:14 


22/10/20
1206
vicvolf в сообщении #1605386 писал(а):
Мы говорим об алгебре, а не о теории множеств.
А давно ли алгебраические структуры и их носители перестали быть множествами?
vicvolf в сообщении #1605386 писал(а):
mihaild в сообщении #1605378 писал(а):
поле это тоже множество.
Это неверно. Поле - это алгебра.
Верно это. Поле - это множество. (по крайней мере если вы опираетесь на теорию множеств, а не на какие-то другие основания)

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 20:18 
Заслуженный участник
Аватара пользователя


28/09/06
10982
EminentVictorians в сообщении #1605375 писал(а):
Теорема
Всякое действительное число является конечным множеством.
EminentVictorians в сообщении #1605375 писал(а):
Вы, конечно, скажете, что это и есть та самая "особая необходимость". Но, по-моему, это какая-то борьба со здравым смыслом. Определите, что в точности означает эта самая "особая необходимость", и дальше уже можно будет что-то более конкретное сказать.

Особая необходимость - это такая штука, без которой не понадобятся подобные теоремы. :wink: Если у меня $\mathbb{R}$ - любой объект, удовлетворяющий аксиоматике непрерывного упорядоченного поля, то подобную теорему просто не из чего доказать.

mihaild в сообщении #1605378 писал(а):
Тогда нельзя говорить, что поле $\mathbb C$ "содержит подполе $\mathbb R$". Если конечно мы не построили множество комплексных чисел специальным хитрым образом.

Почему нельзя? Разве утверждение "поле $\mathbb{C}$ содержит подполе $\mathbb{R}$" помешает нам построить модель $\mathbb{C}$ как $\mathbb{R}+i\mathbb{R}$?

mihaild в сообщении #1605378 писал(а):
Ещё операции нужны.

Да, может быть их даже удастся определить так, чтобы $x+1$ соответствовала теоретико-множественному $x\cup\{x\}$, но, честно говоря, не хочется возиться. Даже если этого не удастся, то всегда можно просто тупо дописать в сигнатуру и аксиоматику теории аксиомы упорядоченного поля. Наверное, после этого нельзя будет сказать, что "построена модель $\mathbb{R}$", но как объект теории $\mathbb{R}$ будет определено и континуальным упорядоченным полем в этой теории оно тоже будет. Вот будет ли непрерывным - не знаю.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 20:24 


22/10/20
1206
epros в сообщении #1605392 писал(а):
Если у меня $\mathbb{R}$ - любой объект, удовлетворяющий аксиоматике непрерывного упорядоченного поля, то подобную теорему просто не из чего доказать.
Так у Вас и топология наверное непонятно как вводится (через какую-нибудь арифметику, неравенства и предикаты), и теоремы Кантора-Бенедиксона нету. В общем, я не вижу ни одного существенного преимущества Вашего подхода перед обычной человеческой теорией множеств.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 21:05 


23/02/12
3372
EminentVictorians в сообщении #1605389 писал(а):
vicvolf в сообщении #1605386 писал(а):
Мы говорим об алгебре, а не о теории множеств.
А давно ли алгебраические структуры и их носители перестали быть множествами?
Алгебраическая структура — это структура, состоящая из множества элементов и определенными операциями над ними.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 21:11 


22/10/20
1206
vicvolf в сообщении #1605399 писал(а):
множества элементов
Множество элементов, над которым происходит всё действо, обычно называют носителем.
vicvolf в сообщении #1605399 писал(а):
определенными операциями над ними.
Операции и отношения - это тоже множества.

А потом все эти множества собираем в упорядоченный кортеж, который тоже множество. Он и будет "алгебраической структурой".

По крайней мере при обычном подходе это так.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 21:15 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
epros в сообщении #1605392 писал(а):
Разве утверждение "поле $\mathbb{C}$ содержит подполе $\mathbb{R}$" помешает нам построить модель $\mathbb{C}$ как $\mathbb{R}+i\mathbb{R}$?
А что такое $\mathbb R + i \mathbb R$? Если (как оно обычно делается) множество пар, то уже $\mathbb R$ подполем не будет.

vicvolf в сообщении #1605386 писал(а):
$\mathbb R,\mathbb C$ - это обозначения соответствующих множеств, а не полей
Каких "соответствующих"?
Вообще $\mathbb R$ иногда обозначает поле, а иногда носитель этого поля (так же как и с многими другими алгебраическими структурами), это не слишком большая проблема.
vicvolf в сообщении #1605386 писал(а):
то доказываете, что над элементами данного множества выполняются операции поля
Что, простите?
Какого всё же множества - поля или носителя?
Если поля, то над ними никакие операции уже не выполняются.
Если носителя, то сам по себе носитель, без операций, особой ценности не представляет. И тут есть два подхода - "аксиоматический" - взять в качестве носителя что попало и потребовать, чтобы операции удовлетворяли нужным свойствам, или "построение" - хитро выбираем носитель, и определяем операции через его элементы.
vicvolf в сообщении #1605399 писал(а):
и определенными операциями над ними
А что такое операции?

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 22:37 
Заслуженный участник
Аватара пользователя


28/09/06
10982
EminentVictorians в сообщении #1605393 писал(а):
В общем, я не вижу ни одного существенного преимущества Вашего подхода перед обычной человеческой теорией множеств.

Во-первых, "мой подход" вовсе не предполагает категорического отказа от теории множеств. Он предполагает, что не нужно втаскивать вопросы о множествах в обсуждение тех вопросов, которые в общем-то и не про множества.
Во-вторых, у Вас явно превратное впечатление о том, что такое "обычная человеческая теория множеств". Это штука, претендующая на универсальную метатеорию всей математики и в силу этого - перегруженная весьма сильной аксиоматикой, которая в большинстве случаев совершенно избыточна. Поэтому да, обсуждение на языке множеств даёт некую универсальность и привычно для многих, но оно отнюдь ничего не упрощает.
В третьих, очевидные преимущества "моего подхода" заключаются в отсутствии недостатков Вашего: Например, я бы ни за что не стал грузить человека, задающего вопросы про то, являются ли действительные числа комплексными, рассуждениями о том, что действительное число - это пара из двух множеств рациональных чисел, и прочими не относящимися к делу вещами.

mihaild в сообщении #1605403 писал(а):
А что такое $\mathbb R + i \mathbb R$? Если (как оно обычно делается) множество пар, то уже $\mathbb R$ подполем не будет.

Нет, не пар. Сложение и умножение - это операции поля, т.е. это символическая запись того, что $c=a+ib$, где $c \in \mathbb{C}, a \in \mathbb{R}, b \in \mathbb{R}$.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 22:55 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
epros в сообщении #1605421 писал(а):
Сложение и умножение - это операции поля
А носитель у поля какой?

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 23:05 
Заслуженный участник
Аватара пользователя


28/09/06
10982
mihaild в сообщении #1605425 писал(а):
А носитель у поля какой?

Эмм, любое надмножество $\mathbb{R}$, содержащее все $a+ib$ и только их, где $a \in \mathbb{R}, b \in \mathbb{R}$.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 23:06 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
epros в сообщении #1605427 писал(а):
содержащее все $a+ib$
А что такое $a + bi$ как множество? Если $\mathbb R$ определяется например через дедекиндовы сечения.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 23:45 
Заслуженный участник
Аватара пользователя


28/09/06
10982
mihaild в сообщении #1605428 писал(а):
А что такое $a + bi$ как множество? Если $\mathbb R$ определяется например через дедекиндовы сечения.

А какая мне разница? Это - доопределение надполя для поля. Скажем, есть у нас числа $2$ и $3$, а я хочу доопределить число $2+3i$. Я возьму какой-нибудь камень из прибрежной гальки, напишу на нём "$2+3i$" и буду считать, что теперь это и есть это самое число.

Вот в арифметике Пеано с символами $S$ и $0$ в сигнатуре как определяется число $3$? Просто берём, и пишем строку символов $SSS0$. У кого-то под руками прибрежная галька, а у кого-то - строки символов алфавита теории. У кого какие есть объекты под рукой, тот такие и добавляет в качестве новых элементов множества.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение15.08.2023, 23:48 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
epros в сообщении #1605433 писал(а):
А какая мне разница? Это - доопределение надполя для поля
Такая, что если хочется чтобы носитель $\mathbb R$ был подмножеством носителя $\mathbb C$, то надо сказать, как собственно строится носитель $\mathbb C$.
epros в сообщении #1605433 писал(а):
Я возьму какой-нибудь камень из прибрежной гальки, напишу на нём "$2+3i$" и буду считать, что теперь это и есть это самое число
Но камень, на котором написано $0 + 0i$, не является дедекиндовым сечением, и, соответственно, не принадлежит $\mathbb R$.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 00:18 
Заслуженный участник
Аватара пользователя


28/09/06
10982
mihaild в сообщении #1605434 писал(а):
надо сказать, как собственно строится носитель $\mathbb C$.

Почему? Если у нас есть только теория множеств, то мы строим носитель $\mathbb C$ из множеств, а если у нас есть что-то другое, то из чего-то другого.

Вот Вы предлагаете взять в качестве носителя $\mathbb R \times \mathbb R$, а почему? Потому что элементами этой штуки являются упорядоченный пары, которые определяются в теории множеств. Т.е. у Вас под рукой оказалась теория множеств. Это тоже вариант.

mihaild в сообщении #1605434 писал(а):
Но камень, на котором написано $0 + 0i$, не является дедекиндовым сечением, и, соответственно, не принадлежит $\mathbb R$.

А мы такой не возьмём. Да, получится, что в $\mathbb C$ смешались объекты разных типов - дедекиндовы сечения с камнями. Но разве теория множеств такое запрещает? Насколько я понимаю, любое множество можно чем угодно дополнить и что угодно из него изъять.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 02:16 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
epros в сообщении #1605440 писал(а):
Да, получится, что в $\mathbb C$ смешались объекты разных типов - дедекиндовы сечения с камнями. Но разве теория множеств такое запрещает?
Нет, но именно это я и называл
mihaild в сообщении #1605378 писал(а):
построили множество комплексных чисел специальным хитрым образом

Т.е. чтобы $\mathbb R$ оказалось именно подполем $\mathbb C$ в строгом смысле, нужно предпринимать специальные усилия.

 Профиль  
                  
 
 Re: Можно ли умножать комплексное число на действительное?
Сообщение16.08.2023, 08:38 
Заслуженный участник
Аватара пользователя


28/09/06
10982
mihaild в сообщении #1605446 писал(а):
Т.е. чтобы $\mathbb R$ оказалось именно подполем $\mathbb C$ в строгом смысле, нужно предпринимать специальные усилия.

Так без специальных усилий в теории множеств не удастся построить всю цепочку множеств $\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$, независимо от того, является ли каждое из них надмножеством предыдущего.

Например, определим нуль как $\varnothing$, а инкремент как $x \cup \{x\}$. Минимальное множество, содержащее нуль и инкремент каждого элемента, это получится $\mathbb{N}$. Как теперь построить $\mathbb{Z}$? Можно взять в качестве минус единицы $\{\mathbb{N}\}$, но операция $x \cup \{x\}$ в качестве инкремента к нему уже не подойдёт. Т.е. придётся оговаривать, что $x \cup \{x\}$ - инкремент только для натуральных чисел, а для отрицательных это будет декремент. Уже получаются какие-то специальные усилия. Или Вы знаете способ лучше? А уж при построении $\mathbb{Q}$ оговаривать, что нужно брать в качестве числителя и знаменателя не каждую пару из $\mathbb{Z}$, а только не имеющие общих делителей, это столько специальных усилий, что просто ужас. По-моему, по сравнению с этим добавить уточнение, что если в знаменателе единица, то нужно брать не пару, а один элемент $\mathbb{Z}$, это незначительное усложнение, зато получим $\mathbb{Z} \subset \mathbb{Q}$.

Аналогично, брать в качестве носителя $\mathbb{C}$ не $\mathbb{R} \times \mathbb{R}$, а $(\mathbb{R} \times \mathbb{R} \setminus \mathbb{R} \times \{0\}) \cup \mathbb{R}$ - это не слишком большая цена за то, чтобы получить $\mathbb{R} \subset \mathbb{C}$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 321 ]  На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19 ... 22  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group