2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 10, 11, 12, 13, 14, 15, 16 ... 21  След.
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 17:40 
Заслуженный участник


20/08/14
11136
Россия, Москва
Soul Friend в сообщении #1511346 писал(а):
а функция $L_{2}(p_{r}\#)$ для $p_5=11$ посчитает эту пару $\{167;169\}$ как простые близнецы ?
В $L_2(p_r\#)$ входит $\varphi_2(p_s\#)$, для $p_r=11$ $p_s=47$, соответственно $\varphi_2(47\#)$ посчитает число $169=13^2$ не взаимно простым с $47\#$ и "в зачёт" эта пара не пойдёт.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 17:50 


23/01/07
3419
Новосибирск
Soul Friend в сообщении #1511346 писал(а):
а функция $L_{2}(p_{r}\#)$ для $p_5=11$ посчитает эту пару $\{167;169\}$ как простые близнецы ?

Она будет исключена еще ранее - на этапе $p_{r}=p_4=7$, для которой $p_{s}=13$
$(168^2-1)\equiv 0\pmod {13}$.

-- 26 мар 2021 22:14 --

Для проверки пар чисел на простоту достаточно рассматривать примориал, в который эта пара входит.
А вообше-то, функция по крайней мере в данном рассмотрении, считает Не "кого", а "скоко".

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 18:44 


31/12/10
1555
Батороев
Вы привели отличный пример с $p_r=7$ и $p_s=13$.
Получается, что весь 7\# находится среди простых чисел. Следовательно и близнецы там
все простые. Так ?

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 19:13 
Заслуженный участник


20/08/14
11136
Россия, Москва
Ну так они и есть все простые, кроме одной единственной пары $\{167;169\}$. И что?

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 19:22 


31/12/10
1555
Dmitriy40
А можно послушать "начальника транспортного цеха" ?

P.S. Там есть 209,211

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 19:58 
Заслуженный участник


20/08/14
11136
Россия, Москва
vorvalm в сообщении #1511394 писал(а):
P.S. Там есть 209,211
Нету: $211>210=7\#$. В приведённой системе вычетов по модулю m нет чисел превышающих или равных m.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 20:19 


31/12/10
1555
Dmitriy40 в сообщении #1511404 писал(а):
Нету: $211>210=7\#$. В приведённой системе вычетов по модулю m нет чисел превышающих или равных m.

Извините, но $\varphi_2(7\#) =15$, куда входит и 209,211
Система вычетов-близнецов - это не ПСВ.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 21:10 
Заслуженный участник


20/08/14
11136
Россия, Москва
Мда, значит мои таблицы выше чуточку ошибочны, я брал числа лишь до $p\#$, а не до $p\#+1$. Хорошо хоть столь малая погрешность там нигде не повлияет вроде бы.

Но пусть даже там не одна, а две не простые пары. Опять же, и что с того? Как это влияет на доказательство? Вы что сказать-то хотите, по теме?

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение27.03.2021, 05:59 
Аватара пользователя


12/10/16
637
Almaty, Kazakhstan
Dmitriy40 в сообщении #1511343 писал(а):
попробуем убрать эту погрешность, сравнив количество пар $L_2(p_r\#)$ с заведомо меньшим количеством чем $y_2(p_r\#)$

А есть ли в анналах математики другие, подобные доказательства, где погрешность коррелируется меньшим или большим вычислениями (сравнениями). Что другие ЗУ думают о таких вида доказательствах. Я считаю, что этот метод приближенного вычисления простых близнецов до заданного $n$ имеет права на публикацию, но как лучшая вероятностная оценка. Принять как за доказательство .... есть пока неопределённые сомнения.
Как пишет сам Dmitriy40
Dmitriy40 в сообщении #1511343 писал(а):
Насколько понимаю, осталось одно тонкое место, с доказательством $y_2(p_r\#)\ge\varphi_2(p_r\#)/p_s$

Нет точной формулы для $y_2(p_r\#)$ , ситуация такая же как и для $\pi(x)$.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение27.03.2021, 13:19 
Заслуженный участник


20/08/14
11136
Россия, Москва
Soul Friend в сообщении #1511489 писал(а):
Dmitriy40 в сообщении #1511343 писал(а):
Насколько понимаю, осталось одно тонкое место, с доказательством $y_2(p_r\#)\ge\varphi_2(p_r\#)/p_s$
Нет точной формулы для $y_2(p_r\#)$ , ситуация такая же как и для $\pi(x)$.
Да, ситуация аналогичная, в том смысле что точной формулы нет и не выводится, а используются оценки снизу (можно и сверху наверное для чего-нибудь). Но доказательство что оценка снизу именно таковой и является, а не просто артефакт в начале числового ряда, конечно нужно. Возможно у автора оно имеется ... Учитывая что $y_2(p_r\#)/\varphi_2(p_r\#)$ падает заметно медленнее $1/p_s$, по крайней мере поначалу, то оценка выглядит правдоподобной.
Только нужно учитывать что я возможно не заметил другие тонкие места.

Сам метод доказательства оценкой снизу/сверху вполне нормален, например сходимость многих рядов так доказывается (типа зажимаем ряд между двумя другими легко доказываемыми сходящимися к одному пределу), да и с теми же оценками $\pi(x)$ ровно так же, главное аккуратно выбрать оценку и доказать её правомочность.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение28.03.2021, 02:15 
Заслуженный участник


20/08/14
11136
Россия, Москва
Dmitriy40 в сообщении #1511343 писал(а):
Насколько понимаю, осталось одно тонкое место, с доказательством $y_2(p_r\#)\ge\varphi_2(p_r\#)/p_s$, хотя бы для всех достаточно больших $p_r$.
Думаю это место непреодолимо.
Фактически его можно ослабить до утверждения что для любого $p_s$ (специально обозначу как у автора) из хотя бы некоторого бесконечного подмножества простых всегда встретится минимум одна пара простых близнецов в интервале $(p_s\ldots p_s^2)$. И даже такое ослабленное оно недоказуемо (ибо само уже будет являться доказательством бесконечности простых близнецов). А в данном доказательстве делаются попытки оценить количество пар в этом диапазоне через плотность взаимно простых с праймориалом $p_s\#$ пар, но плотность понятие статистическое и оно не гарантирует наличие такой пары именно в нужном диапазоне, даже хоть для какого-то подмножества простых. Или, другими словами, теоретически может достигаться любая нижняя граница, в том числе и нулевая. И любая ненулевая оценка снизу не является правомерной, пока не доказано обратное. Вах.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение28.03.2021, 23:31 
Заслуженный участник


20/08/14
11136
Россия, Москва
Ради интереса проверил насколько точно $L_2(p\#)$ предсказывает число простых пар на интервале $(p \ldots p^2)$. Вообще-то они конечно лишь взаимно простые с $p\#$, но в данном интервале они все гарантированно простые. До $p=11$ не интересно, потом оценка $L_2$ меньше реального количества пар $y_2$, начиная с $p=23$ отношение $L_2/y_2$ "бултыхается" в пределах $0.898 \ldots 0.999$, единицы не достигая, но вот для $p=131, 163, 179$ $L_2(p\#)$ уже достоверно больше точного количества. А начиная с $p=223$ оно превышает реальное количество на $0\%\ldots3\%$, уже нигде не опускаясь ниже $100\%$. И растёт. Не монотонно, с колебаниями, но достоверно растёт. Для $p=997$ достигая значения в $1.064$ (превышение на $6.4\%$ ). Абсолютные цифры количеств при этом конечно растут.

Другими словами, оценка количества пар по их средней плотности во всём праймориале недостоверна. И чем дальше, тем хуже.
Ограничена ли погрешность сверху или продолжит расти вплоть до полного исчезновения простых близнецов где-нибудь на многомиллионных праймориалах — как раз и есть предмет авторского доказательства. Я лишь проверил гипотезу о равномерном распределении взаимно простых с праймориалом пар.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение30.03.2021, 06:26 


23/01/07
3419
Новосибирск
Dmitriy40 в сообщении #1511953 писал(а):
Ограничена ли погрешность сверху или продолжит расти вплоть до полного исчезновения простых близнецов где-нибудь на многомиллионных праймориалах — как раз и есть предмет авторского доказательства. Я лишь проверил гипотезу о равномерном распределении взаимно простых с праймориалом пар.

У меня не было гипотезы, а было лишь допущение. :roll:
То, что в примориалах пары, взаимно простые этому примориалу, расположены неравномерно - это факт.
Такое допущение ("допустим, что...") позволяет создать, хотя и приближенные, формулы расчета.
Естественно, что затем надо найти пределы этого допущения (чего я не сделал и что явилось предметом высказанных претензий). Этим сейчас и занимаюсь.

А Ваши расчеты интересны сами по себе - на мой взгляд, позволяют определять зоны уплотнения и разрежения не только пар, взаимно простых примориалу, но и простых чисел... Мне так кажется.
Там, где происходят упомянутые Вами завышения (или скачки), там по-видимому, есть либо большие разрежения, либо довольно крупные промежутки между простыми. - Но это уже гипотеза.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение07.04.2021, 10:54 


23/01/07
3419
Новосибирск
Доказательство бесконечности простых чисел близнецов.

07.04.2021 г.

Обозначения:

$p_{r}$ - простое число, где $r$ – порядковый номер числа в ряду простых чисел.
$p_{s}$ - наибольшее простое число, квадрат которого не превосходит $p_{r}\#$.

$\varphi_{2}(n)$ - мультипликативная функция, значение которой равно* количеству пар близнецов (натуральных чисел с разницей $2$), не превышающих $n$ и в которых оба числа взаимно простые с $n$ ("пары, взаимно простых с $n$"). Для каждого простого числа $p$ функция $\varphi_{2}(p) = p-2$, кроме простого числа $2$, для которого $\varphi_{2}(2)=1$.
Функция $\varphi_{2}(p)$ позволяет удалить два вычета из кольца вычетов простого числа.
В данном рассмотрении производится проверка пар натуральных чисел на выполнение сравнения: $(a_{i}-1)\cdot (a_{i}+1) \equiv 0 \pmod p$ (где $a_i$ - натуральные числа от $1$ до $(p-1)$ ) и удаление таких пар из числа пар, взаимно простых с $p$, т.е. подразумевается удаление двух остатков: $(\pm 1)\pmod p$.


Доказательство:

Используя функцию $\varphi_{2}(p)$ и свойство ее мултипликативности, можно составить новую функцию:

$$L_{2}(p_{r}\#) = \dfrac{\varphi_{2}(p_{s}\#)\cdot p_{r}\#}{p_s\#} \eqno (1)$$

Функция $L_{2}(p_{r}\#)$ определяет количество пар простых-близнецов, расчитанное при допущении (I), что пары, взаимно простых с примориалом, расположены в нем равномерно (2).

Данная функция не учитывает количество пар простых-близнецов, не превышающих $p_{s}$, обозначим их числом $t$ (3).
Так как в действительности распределение пар, взаимно простых с примориалом, неравномерное, то функция $L_{2}(p_{r}\#)$ имеет погрешность относительно числа $(\pi_{2}(p_{r}\#)-t)$, где $\pi_{2}(p_{r}\#)$ - действительное число пар простых-близнецов в примориале $p_{r}\#$.

Для наглядности вышесказанного развернем (1):

$L_{2}(p_{r}\#)=p_{r}\#\cdot\left(1-\frac {1}{2}-\frac{2\cdot \varphi_{2}(2\#)}{3\#}-\frac {2\cdot \varphi_{2}(3\#)}{5\#}..-\frac{2\cdot \varphi_{2}(p_{r-1}\#)}{p_{r}\#}\right)-p_{r}\#\cdot \left(\frac{2\cdot \varphi_{2}(p_{r}\#)}{p_{r+1}\#}+..+\frac{2\cdot \varphi_{2}(p_{s-1}\#)}{p_{s}\#}\right) \eqno(4) $


В выражении (4) число в первой скобке, домноженное на $p_r\#$, соответствует $\varphi_{2}(p_{r}\#)$, т.е. числу пар, взаимно простых с примориалом. Это число достоверное.
Число во второй скобке, домноженное на $p_r\#$ соответствует числу пар, в которых хотя бы одно число кратно простым числам от $p_{r+1}$ до $p_{s}$. Это число в виду допущения (2) является причиной погрешности, поэтому может быть названо "недостоверным числом".

Перепишем (1):

$$L_{2}(p_r\#)= \varphi_{2}(p_r\#) \cdot \dfrac{\varphi_{2}(p_s\#)\cdot p_r\#}{\varphi_{2}( p_r\#) \cdot p_s\#}\eqno (5)
$$

Дробный коэффициент в (5): $u=\dfrac{\varphi_{2}(p_s\#)\cdot p_{r}\#}{\varphi_{2}(p_r\#)\cdot p_{s}\#}$ показывает, в какой пропорции в примориале количество пар простых-близнецов меньше количества пар, взаимно простых с примориалом.
Если рассмотреть действительный коэффициент $u_{0}$ для примориала $p_{r}\#$, то также можно записать зависимость:
$$\pi_{2}(p_{r}\#)-t=\varphi_{2}(p_{r}\#)\cdot u_{0}$$

Расчет коэффициента $u_{0}$ на практике сопряжен с большими трудностями, связанными с точным подсчетом числа вхождений простых от $p_{r+1}$ до $p_{s}$ в правую скобку выражения (4). Для очень больших примориалов задача практически невыполнимая.

Но за то, можно определить теоретические границы коэффициента $u$:

1. Максимальное теоретическое значение $u_{\max}=1\eqno (5.1)$
Наступает в случае отсутствия простых на интервале от $p_{r}$ до $\sqrt {p_{r}\#}$. Хотя примером такого примориала может служить примориал $5\#$, в котором $\pi_{2}(5\#)-t=\varphi_{2}(5\#)$, но при дальнейшем увеличении примориалов такая ситуация повториться не может (математиками доказаны значительно меньшие интервалы, на которых присутствуют простые числа). Поэтому $u_{\max}=1$ является теоретической верхней границей рассматриваемого коэффициента.

2. Для определения теоретической нижней границы коэффициента $u_{\min}$ введем еще одно допущение (II):

На интервале от $p_{r}$ до $p_{s}$ все нечетные числа - простые-близнецы. При этом $p_{s}$ максимально приближено к $\sqrt {p_{r}\#}$.

Допущение (II) предполагает равномерность распределения чисел от $p_{r}$ до $p_{s}$, поэтому использование записи коэффициента в (5) правомерно:
$$u_{\min}= \dfrac{\varphi_{2}(p_s\#)\cdot p_r\#}{\varphi_{2}( p_r\#) \cdot p_s\#}\egno (5.2)$$
После сокращения общих членов в числителе и знаменателе, получаем:

$$ u_{\min}= \dfrac {p_{r+1}-2}{p_{r+1}}\cdot\dfrac {(p_{r+1}+2)-2}{p_{r+1}+2}... \cdot \dfrac{p_{s}-2}{p_{s}} =\dfrac {p_{r+1}-2}{p_s}=\dfrac {p_{r}}{p_{s}} \eqno (5.2.1) $$

(в (5.2.1) все числа числителя, кроме первого, сокращаются с числами знаменателя, кроме последнего).

Полученное в (5.2.1) значение $u_{\min}$ является нижней теоретической границей рассматриваемого коэффициента. Действительно, в реальности такое распределение простых-близнецов не возможно** (например, каждое третье число кратно $3$), поэтому исчезновение любого числа из ряда, описанного в допущении (II) (т.е. появлении интервалов, больших $2$) повлечет к уменьшению числа слагаемых в правой скобке (4) (или исчезновению дробей, меньших единицы в (5.2.1) ) и соответственно, увеличению коэффициента $u_{0}$ по сравнению с $u_{\min}$.

Полученная нижняя теоретическая граница $u_{\min}$ позволяет определить и нижнюю теоретическую границу количества пар простых-близнецов в примориале $p_{r}\#$:
$$\pi_{2}(p_{r}\#)_{\min}-t= \varphi_{2}(p_{r}\#)\cdot u_{\min}\eqno (6)$$
С учетом вышесказанного: $$\pi_{2}(p_{r}\#)>\pi_{2}(p_{r}\#)_{\min}\eqno (7)$$
Так как $p_{s}<\sqrt {p_{r}\#}$, то:
$$\pi_{2}(p_{r}\#)_{\min}-t= \varphi_{2}(p_{r}\#)\cdot \dfrac {p_{r}}{p_{s}}>\varphi_{2}(p_{r}\#)\cdot \dfrac {p_{r}}{\sqrt {p_{r}\#}}\eqno (8) $$
Начиная с $p_{r}\#=7\#$, число:
$$p_{r}\cdot \dfrac {\varphi_{2}(p_{r}\#)}{\sqrt {p_{r}\#}}=p_{r}\cdot \dfrac {1}{2}\cdot \dfrac {3-2}{\sqrt{3}}\cdot \dfrac {5-2}{\sqrt{5}}\cdot \dfrac {7-2}{\sqrt {7}}>1$$
и монотонно возрастает, следовательно, можно записать, что начиная с $p_{r}=7\#$, с учетом неравенств (7), (8):
$$\pi_{2}(p_{r}\#)-t>1 \eqno (9)$$
Неравенство (9) утверждает, что каким бы ни было количество пар простых-близнецов до $p_{s}$, в примориале $p_{r}\#$ всегда существует, как минимум $1$ пара простых-близнецов, превышающих $p_{s}$. (10)

Т.к. простые числа бесконечны, а соответственно, бесконечны примориалы, то с учетом вывода (10) доказано, что простые-близнецы бесконечны.

*Примечание 1: функция $\varphi_{2}(n)$ всегда дает одно лишнее значение, независимо от числа $n$.
**Примечание 2: Почти похожая картина наблюдается в $p_{r}\#=7\#$, только надо "убедить себя, что $9$ - простое число".

p.s. Выражаю особую Благодарность Dmitriy40 за его конструктивную критику, позволившую устранить недочеты, уточнить некоторые параметры, а также за его помощь в редактировании текста. Спасибо!

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение09.04.2021, 13:55 


23/01/07
3419
Новосибирск
Батороев в сообщении #1513210 писал(а):
$$p_{r}\cdot \dfrac {\varphi_{2}(p_{r}\#)}{\sqrt {p_{r}\#}}=p_{r}\cdot \dfrac {1}{2}\cdot \dfrac {3-2}{\sqrt{3}}\cdot \dfrac {5-2}{\sqrt{5}}\cdot \dfrac {7-2}{\sqrt {7}}>1$$

В этом выражении потерял знак квадратного корня при двойке. Следует читать:
$$p_{r}\cdot \dfrac {\varphi_{2}(p_{r}\#)}{\sqrt {p_{r}\#}}=p_{r}\cdot \dfrac {1}{\sqrt {2}}\cdot \dfrac {3-2}{\sqrt{3}}\cdot \dfrac {5-2}{\sqrt{5}}\cdot \dfrac {7-2}{\sqrt {7}}>1$$

Хотел немного прояснить про функцию $\varphi_{k}(n)$, где $k=2,3,4...$.

Наверное, можно использовать эти функции для анализа вычетов в основном кольце вычетов по простым числам, как это делают мои коллеги-любители математики в соседней теме для поиска интервалов между простыми, но я не пробовал.

У меня такие функции "заточены" для рассмотрения степенных колец вычетов. С этой точки зрения их можно было бы назвать "многомерными функциями Эйлера".
В частности, в своем доказательстве я рассматриваю квадратичные вычеты $a_{i}^2-1\equiv 0\pmod {p_j}$. Необходимо сразу отметить, что применение рассматриваемой функции не отвечает на вопрос "Какие?", а дает ответ на вопрос "Сколько?". Поэтому вычеты могут быть любыми и в конце сообщения я приведу пример применения других вычетов.
Если кому-нибудь будет интересно получить ответ на вопрос "Какие?", расскажу, как делаю сам:
В Exel завожу в первый столбец натуральные числа $a_{i} =1...210$, т.е. готовлю к рассмотрению примориал $7\#$.
Возвожу эти числа в квадрат и из каждого из них вычитаю единицу. Затем определяю остатки полученных чисел по последоывательным простым числам.
На первом этапе (проверка по простому $2$) "вычеркиваю" (помечаю заливкой клетку) все нули (соответствует нечетным числам $a_{i}$, т.к. примыкающие к ним близнецы - четные числа и совсем не простые). Поэтому $\varphi_{2}(2)=1$.
На втором и последующих этапах вычеркиваются уже по два нулевых остатка.
При проверке остатков по основанию любого простого количество невычеркнутых чисел $a_{i}$ в примориале этого простого определяет число пар, взаимно простых с этим примориалом. Следует отметить, что полученное число для любого примориала всегда завышено ровно на $1$, т.к. учитывает пару $p\#\pm 1$, в которой одно число выходит за рамки примориала. Но отказаться от этого завышения нельзя, т.к. оно "готовит" примориал к "тиражированию" для перехода к следующему примориалу. Например, в примориале $5\#$ имеется две пары, взаимно простые примориалу. Это $12\pm1$ и $16\pm 1$, но Exel показывает еще одну, а именно $30\pm1$, которая будет учтена в следующем примориале $7\#$. В виду мизерности этой погрешности, особенно в больших примориалах ($\frac {1}{p\#}$), ею вполне можно пренебречь.
Следует отметить, что при переходе от примориала $p_{i}\#$ к примориалу $p_{i+1}\#$, число новых составных пар, в которых одно из чисел кратно $p_{i+1}$ равняется $\varphi_{2}(p_{i}\#)$.
На основании вышеизложенного можно составить формулу расчета числа пар, взаимно простых примориалу:
$$\varphi_{2}(p_{r}\#)= p_{r}\#- \dfrac{1}{2}\cdot p_{r}\# -  \dfrac{2\cdot 1}{3\#}\cdot p_{r}\#-  \dfrac{2\cdot (3-2)}{5\#}\cdot p_{r}\# -...-  \dfrac{2\cdot (p_{r-1}-2)}{p_{r}\#}\cdot p_{r}\#\eqno (1)$$
Если пошагово сворачивать выражение (1), приводя уменьшаемое и вычитаемое к общему знаменателю, то получим "свернутую форму" расчета функции:
$$\varphi_{2}(p_{r}\#)=1\cdot (3-2)\cdot (5-2)\cdot ...\cdot (p_{r}-2)\eqno (2)$$
Этот переход от развернутой формулы к свернутой косвенно доказывает мультипликативность функции.
Каковы другие свойства многомерных функций Эйлера, в полной ли мере эти свойства совпадают со свойствами самой функции Эйлера? - ответы на эти вопросы требуют отдельных исследований и, надеюсь, будут найдены специалистами в случае, если посчитают, что применение многомерных функций Эйлера является эффективным инструментом.
Со своей стороны приведу еще один пример применения такой функции:

Доказательство бесконечности простых чисел вида $p=n^2+1$.

Обозначения:
Простые числа, имеющие среди квадратичных вычетов остатки $(-1)\pmod p$ не так много, например:
$2,5;13;17;29;37...$.
Поэтому в рассмотрении будут участвовать только такие простые числа. Назовем их "простые числа специального вида" (ПЧСВ).
Обозначим их через $p_{r}$, где $r$ - порядковый номер простого в ряду ПЧСВ.

Количество чисел, взаимно простых с произведением $v_{r}=\prod\limits_{p_{1}=5}^{p_{r}}$ равно:
$$\varphi_{2}(v_{r})=1\cdot (5-2)\cdot (13-2)\cdot (17-2)\cdot ...\cdot (p_{r}-2)$$
$\varphi_{2}(2)=1$, для остальных ПЧСВ $\varphi_{2}(p)=(p-2)$.
Через $p_{s}$ обозначим максимальное ПЧСВ, не превосходящее $v_{r}$.

Доказательство:
Количество простых $P(v_{r})$ вида $p=n^2+1$ в произведении $v_{r}$ можно рассчитать, как некую часть от количества чисел, взаимно простых с этим произведением:
$$P(v_{r})= \varphi_{2}(v_{r})\cdot k_{0}\eqno (3) $$
Расчет коэффициента $k_{0}$ трудоемкий и для больших произведений $v_{r}$ не представляется возможным.
Но так же, как и в доказательстве бесконечности простых-близнецов, можно рассчитать теоретическую нижнюю границу коэффициента $k_{\min}$.
Для этого сделаем допущение, что все нечетные числа от $p_{r}$ до $p_{s}$ - ПЧСВ.
В этом случае все эти числа создают равномерную последовательность и коэффициент $k_{\min}$ можно рассчитать по линейной зависимости:
$$ k_{\min}=\dfrac {p_{r+1}-2}{p_{r+1}}\cdot \dfrac {p_{r+2}-2}{p_{r+2}}\cdot ...\cdot \dfrac {p_{s-1}-2}{p_{s-2}}\cdot \dfrac {p_{s}-2}{p_{s}}=\dfrac {p_{r}}{p_{s}}\eqno (4)$$
(т.к. все числа в числителе, кроме первого, сократятся с числами знаменателя, кроме последнего).
Полученное значение коэффициента $k_{\min}$ является минимальным для коэффициентов, т.к. любое приближение к реальности (уменьшение количества простых в диапазоне от $p_{r}$ до $p_{s}$) ведет к увеличению коэффициента за счет исчезновения дробей, меньших единицы. Поэтому коэффициент $k_{\min}$ определяет нижнюю теоретическую границу числа простых чисел вида $p=n^2+1$.
Соответственно можно записать:
$$P(v_{r})>\varphi_{2}(v_{r})\cdot k_{\min}=\varphi_{2}(v_{r})\cdot \dfrac {p_{r}}{p_{s}}\eqno (5)$$

Из начального условия $p_{s}<v_{r}$ следует, что:
$$\varphi_{2}(v_{r})\cdot \dfrac {p_{r}}{p_{s}}>\dfrac {\varphi_{2}(v_{r})}{v_{r}}\cdot \dfrac {p_{r}}{1}=\dfrac {1}{2} \cdot \dfrac {5-2}{5}\cdot \dfrac {13-2}{13}\cdot... \cdot \dfrac {p_{r}-2}{p_{r}}\cdot \dfrac {p_{r}}{1}>1\eqno (6) $$
(т.к. сдвинув числители на одну позицию влево, получаем все дроби больше единицы, кроме последней).

С учетом (5) и (6) можно записать:
$$P(v_{r})>1\eqno (7)$$
Неравенство (7) утверждает, что каким бы ни было количество простых вида $p=n^2+1$ в пределах, не превышающих произведение $v_{r}$, всегда найдется, как минимум, одно простое того же вида, превышающее $v_{r}$. А т.к. простые вида $p=n^2+1$ сами являются ПСВЧ, то их число бесконечно (8).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 302 ]  На страницу Пред.  1 ... 10, 11, 12, 13, 14, 15, 16 ... 21  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: tolstopuz


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group