2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4  След.
 
 Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 04:11 
Аватара пользователя
Ну что ж, сформулирую тогда задачу.
Пусть у нас есть бесконечная труба радиуса $R$, которая крутится с постоянной угловой скоростью $\omega_0$. Внутри находится жидкость без полостей плотности $\rho$ и вязкости $\eta$. Гравитации нет.
В какой-то нулевой начальный момент труба начинает крутиться по закону $\omega=\omega_0\exp(-\lambda t)$ определить вид функции $\omega(r,t)$ при условиях $\omega(R,t)=\omega_0\exp(-\lambda t)$ и $\omega(r,0)=\omega_0$. Можно потом посмотреть, как ведет себя эта функция при $\lambda \to \infty$. Принципе не обязательно использовать экспоненциальное затухание угловой скорости цилиндра. Если какая другая убывающая функция подойдет лучше, можно ее использовать.
В общем решив эту задачу, можно сразу и установить вид кривой вращения реальной жидкости в сосуде без дна (дно бесконечно глубоко). Если поставить этот бесконечный цилиндр вертикально.

 i  Eule_A:
Выделено из темы "Свободная поверхность вращающейся жидкости - параболоид?"

 
 
 
 Re: Свободная поверхность вращающейся жидкости -параболоид?
Сообщение30.10.2017, 04:32 
Аватара пользователя
fred1996 в сообщении #1260357 писал(а):
Ну что ж, сформулирую тогда задачу.
Пусть у нас есть бесконечная труба радиуса $R$, которая крутится с постоянной угловой скоростью $\omega_0$. Внутри находится жидкость без полостей плотности $\rho$ и вязкости $\eta$. Гравитации нет.
В какой-то нулевой начальный момент труба начинает крутиться по закону $\omega=\omega_0\exp(-\lambda t)$ определить вид функции $\omega(r,t)$ при условиях $\omega(R,t)=\omega_0\exp(-\lambda t)$ и $\omega(r,0)=\omega_0$. Можно потом посмотреть, как ведет себя эта функция при $\lambda \to \infty$. Принципе не обязательно использовать экспоненциальное затухание угловой скорости цилиндра. Если какая другая убывающая функция подойдет лучше, можно ее использовать.
В общем решив эту задачу, можно сразу и установить вид кривой вращения реальной жидкости в сосуде без дна (дно бесконечно глубоко). Если поставить этот бесконечный цилиндр вертикально.

Абслютно верно. Это именно то. что я хотел, т.е. перегиб у поверхности имеется именно во время переходного процесса вращения. Правда, можно сформулировать задачу несколько иным спсобом:
Пусть у нас есть неподвижная бесконечная труба радиуса $R$. Внутри находится жидкость без полостей плотности $\rho$ и вязкости $\eta$. Гравитация есть и равна $g$.
В момент времени $t=0$ граничные условия для функции поля угловых скоростей $\omega(r,t)$ следующие: $\omega(R,0)=0$ и $\omega(0,0)=\omega_0$. Найти эту функцию в произвольный момент времени и далее -форму вращающейся жидкости

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 04:34 
fred1996 в сообщении #1260357 писал(а):
Можно потом посмотреть, как ведет себя эта функция при $\lambda \to \infty$.
Нельзя. В гидродинамике такие предельные переходы не работают. В какой-то момент течение может стать турбулентным, и всё рассыпется на отдельные вихри.

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 04:50 
Аватара пользователя
realeugene в сообщении #1260363 писал(а):
fred1996 в сообщении #1260357 писал(а):
Можно потом посмотреть, как ведет себя эта функция при $\lambda \to \infty$.
Нельзя. В гидродинамике такие предельные переходы не работают. В какой-то момент течение может стать турбулентным, и всё рассыпется на отдельные вихри.


Ну это в реальной гидродинамике нельзя. Я могу задать достаточно большое $\lambda$ и посмотреть в какой-то момент близкий к нулевому на фунцию $\omega(r,\triangle t)$. У этой функции где-то близко к границе будет максимум. Реально кривая будет таким образом отличаться от того, что в стакане, когда мы чай мешаем ложкой. Но все-равно интересно. Ну а в принципе даже наверное можно потом оценить, с какой скоростью можно менять угловую скорость цилиндра, чтобы градиент скорости в жидкости не превысил порога турбулентности.

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 04:52 
fred1996 в сообщении #1260365 писал(а):
Я могу
Угадывайте. Я вот не возьмусь.

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 19:50 
Аватара пользователя
Ну так что?
Кто возьмется перевести задачу с языка слов на язык формул?
Нужно всего-то составить простенький дифур. Я понимаю, математики умеют решать дифуры. А вот составлять их на примере даже простых задач - это наверное дело физиков? :D
На самом деле даже на словах это уравнение ничем не отличается от уравнения теплопроводности. Ну значит и физическую логику надо применить в этом направлении.
Могу только сказать, что студенты обычно способны воспроизвести ход вывода стандартных уравнений в классических случаях. Но когда сталкиваются с конкретными, не совсем "классическими" задачами, как эта, моментально приходят в ступор.

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 20:27 
fred1996 в сообщении #1260536 писал(а):
Ну так что?
Кто возьмется перевести задачу с языка слов на язык формул?
Разве не вы собирались это сделать?

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 21:41 
Аватара пользователя
Я вообще-то поставил задачу вначале. Мне кажется не совсем этично сразу и решение предлагать. Тем более на мой взгляд это хорошее упражнение на здравый физический смысл.
В физике ведь большинство уравнений выводится исходя из здравого смысла :)

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 21:41 
Аватара пользователя
fred1996 в сообщении #1260536 писал(а):
Ну так что?
Кто возьмется перевести задачу с языка слов на язык формул?
Нужно всего-то составить простенький дифур. Я понимаю, математики умеют решать дифуры. А вот составлять их на примере даже простых задач - это наверное дело физиков? :D
На самом деле даже на словах это уравнение ничем не отличается от уравнения теплопроводности. Ну значит и физическую логику надо применить в этом направлении.
Могу только сказать, что студенты обычно способны воспроизвести ход вывода стандартных уравнений в классических случаях. Но когда сталкиваются с конкретными, не совсем "классическими" задачами, как эта, моментально приходят в ступор.

Посмотрите начало решения сходной задачи в моем топике про параболоид

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 21:48 
Аватара пользователя
Вообще-то эта задача никоим боком не связана с парболоидом в вашей задаче.
Здесь нужно
1. Вывести уравнение движения системы
2. Попытаться решить его исходя из предлагаемых, или других разумных граничных условиях.
То есть найти функциональную зависимость угловой скорости от времени и радиуса.
В вашей задаче угловая скорость константа и решается задача о форме поверхности.
Мы можем связать эти две задачи на последнем этапе. Там просто в интеграл надо будет подставить другую функцию.

Я посмотрел ваш дифур. Он неверный. Подсказка. Сила трения слоя о слой зависит отградиента скорости. Значит разница сил на наружный и внутрений слои зависит от изменения этого градиента. То есть от второй производной.

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 22:29 
Аватара пользователя
fred1996 в сообщении #1260595 писал(а):
Вообще-то эта задача никоим боком не связана с парболоидом в вашей задаче.
Здесь нужно
1. Вывести уравнение движения системы
2. Попытаться решить его исходя из предлагаемых, или других разумных граничных условиях.
То есть найти функциональную зависимость угловой скорости от времени и радиуса.
В вашей задаче угловая скорость константа и решается задача о форме поверхности.
Мы можем связать эти две задачи на последнем этапе. Там просто в интеграл надо будет подставить другую функцию.

Я посмотрел ваш дифур. Он неверный. Подсказка. Сила трения слоя о слой зависит отградиента скорости. Значит разница сил на наружный и внутрений слои зависит от изменения этого градиента. То есть от второй производной.

А по-моему, разность сил определяется разностью площадей внешней и внутренней поверхности слоя толщиной $dr$, находящегося на расстояннии $r$ от оси вращения. А градиент в пределах этого слоя можно считать постоянным. Хотя, возможно нужно учитывать оба эффекта.

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 22:51 
Аватара пользователя
fred1996 в сообщении #1260588 писал(а):
Я вообще-то поставил задачу вначале.
А гравитация в задаче есть? Если есть, то запаритесь решать ;)

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 22:57 
Аватара пользователя
Вот какое уравненьице на самом деле для $\omega(r, t)$: $\frac{1}{r} \frac{\partial \omega}{\partial r}+\frac{\partial ^2\omega}{\partial r^2}=\frac{1}{\nu} \frac{\partial \omega}{\partial t}.$

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 23:31 
Аватара пользователя
reterty в сообщении #1260634 писал(а):
Вот какое уравненьице на самом деле для $\omega(r, t)$: $\frac{1}{r} \frac{\partial \omega}{\partial r}+\frac{\partial ^2\omega}{\partial r^2}=\frac{1}{\nu} \frac{\partial \omega}{\partial t}.$
А гравитация куда делась? С гравитацией движение становится неплоским, и появляется вертикальный поток жидкости. Кроме того, нужны ещё граничные условия.

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение30.10.2017, 23:39 
Аватара пользователя
Пока нам гравитация не нужна.
Можно например считать, что цилиндр конечен, поставлен вертикально, полностью заполнен жидкостью, и нет трения на обоих основаниях цилиндра. В таком случае есть гравитация, нет гравитации, роли не играет.

 
 
 [ Сообщений: 47 ]  На страницу 1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group