2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение07.11.2017, 17:59 
Аватара пользователя
svv в сообщении #1262885 писал(а):
reterty
У Вас остались вопросы?

-- Пн ноя 06, 2017 22:12:37 --

Разделим вращающуюся жидкость цилиндрической поверхностью $r=\operatorname{const}$ на две части — внешнюю и внутреннюю. Выделим малый участок на цилиндрической поверхности. Благодаря вязкости внешняя часть действует через этот участок на внутреннюю с силой, направленной по касательной. Пусть поверхностная плотность силы равна $\sigma$.

Давайте разобьём проблему на две.
1) Почему $\sigma=\eta\left(\frac{\partial v}{\partial r}-\frac{v}{r}\right)$, а не $\sigma=\eta\frac{\partial v}{\partial r}$, вопреки формуле Ньютона?
2) Как, имея правильную формулу для $\sigma$, получить правильное уравнение для $v$?

Уважаемый svv!
Меня для начала все же интересует пункт 1). Из школьного курса мне известно, что при переходе во вращающуюся неинерциальную СО добавляются две ( в общем случае) силы инерции.
а вот как перенормируется градиент в ней, найти строгого математического обоснования не могу.

 
 
 
 Re: Задача о движении жидкости во вращающейся трубе
Сообщение07.11.2017, 18:38 
Аватара пользователя
А в какую неинерциальную систему Вы будете переходить? Наверное, для каждого цилиндрического слоя — в свою систему, потому что у каждого слоя своя угловая скорость. Ладно — до тех пор, пока не встретится более сложное распределение скоростей.

Есть другой вариант — в неподвижной системе вместо простой формулы Ньютона $\sigma=\eta\frac{\partial v}{\partial n}$ использовать формулу, справедливую для произвольных полей скорости:
$\sigma_{ik}=\eta(\frac{\partial v_i}{\partial x_k}+\frac{\partial v_k}{\partial x_i})$
Это формула (15.8) «Гидродинамики» Ландау-Лифшица (без первого слагаемого). Здесь $\sigma_{ik}$ — тензор вязких напряжений.

Выражение $\frac{\partial v_i}{\partial x_k}+\frac{\partial v_k}{\partial x_i}$ обладает тем свойством, что оно равно нулю для всякого поля скоростей, в котором расстояние между частичками жидкости не меняется (т.е. для полей Киллинга). Выражение реагирует лишь на ту часть поля, которая связана с изменением взаимных расстояний — то, что требуется.

К сожалению, приведённое выражение справедливо лишь в декартовых координатах. В случае произвольных координат надо использовать ковариантную производную. Если знакомы с этим понятием, никаких проблем. Но нетрудно посчитать и в декартовых, особенно если удачно расположить систему координат относительно интересующей точки.

 
 
 [ Сообщений: 47 ]  На страницу Пред.  1, 2, 3, 4


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group