2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5 ... 12  След.
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение24.05.2015, 00:05 
Аватара пользователя
Geen в сообщении #1018662 писал(а):
как иначе, принципиально, (без метрики) можно определить кривизну?
Посредством буквы Г.

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение24.05.2015, 00:22 
=

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение24.05.2015, 00:28 
Аватара пользователя
Утундрий в сообщении #1018925 писал(а):
Geen в сообщении #1018662 писал(а):
как иначе, принципиально, (без метрики) можно определить кривизну?
Посредством буквы Г.
И?
А то можно ещё сразу букву R взять ;-)

Кстати, возможно просто слово "определить" было воспринято не в том значении...

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение24.05.2015, 00:54 
Аватара пользователя
Geen в сообщении #1018934 писал(а):
И?
И вотъ.

Вам наверняка встречалось такое устойчивое словосочетание: "кривизна связности". Подумайте, к чему бы оно?

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение24.05.2015, 11:06 
epros в сообщении #1018879 писал(а):
Иногда доопределить согласованную со связностью метрику оказывается можно, а иногда -- нельзя.

а какие есть достаточные условия локального существования метрики согласованной с данной связностью? (при $\{R^i_{jks}\}\ne 0)$

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение24.05.2015, 11:54 
Аватара пользователя
Насколько я помню, условие $\Gamma_{ij}^{k}+\Gamma_{ik}^{j}=0$ является необходимым и достаточным для этого (у Постникова в "Лекции по геометрии"-4 есть точная формулировка).

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение24.05.2015, 11:57 
а даже так, понятно, спасибо. раз так, значит это следствие вот этой теоремы: post759012.html#p759012 я должен был сообразить

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение25.05.2015, 15:22 
Аватара пользователя
epros в сообщении #1018879 писал(а):
В случае ненулевой кривизны всё не так просто: Иногда доопределить согласованную со связностью метрику оказывается можно, а иногда -- нельзя.

А вот я слышал другое: если задать произвольную (с нужными гладкостями и ты. пы.) кривизну как тензорное поле на координатной карте, то будет существовать многообразие с ней.

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение25.05.2015, 20:21 
Аватара пользователя
lek в сообщении #1018991 писал(а):
условие $\Gamma_{ij}^{k}+\Gamma_{ik}^{j}=0$ является необходимым и достаточным для
Интересно! А можно чуть подробней? Хотя бы на идейном уровне. Без посылов в Постникова.

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение25.05.2015, 23:06 
Аватара пользователя
Только на идейном :) Форма связности в расслоении линейных реперов над произвольным (паракомпактным) многообразием имеет вид $\omega=\omega_{j}^{i}e_{i}^{j}$, где $\omega_{j}^{i}=\Gamma_{kj}^{i}dx^{k}$ и $e_{i}^{j}$ - базис алгебры Ли $gl(n)$. Оказывается, что редукция группы $GL(n)\to O(n)$ ведет к редукции векторного расслоения тогда и только тогда, когда связность согласована с метрикой (т.е. когда параллельный перенос слоев сохраняет метрику, заданную на каждом слое). Поскольку алгебра Ли $o(n)$ антисимметрична, это влечет $\omega_{j}^{i}+\omega_{i}^{j}=0$ или $\Gamma_{kj}^{i}+\Gamma_{ki}^{j}=0$.

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение25.05.2015, 23:08 
Аватара пользователя
lek в сообщении #1019601 писал(а):
Поскольку алгебра Ли $o(n)$ антисимметрична
Ой, как нехорошо... Впрочем, надо будет поразмыслить. Наверняка этому есть хорошее элементарное объяснение.

P.S. Индексы я бы опустил, а то не сразу понятно обо что речь.

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение27.05.2015, 12:52 
Аватара пользователя
Munin в сообщении #1019400 писал(а):
если задать произвольную (с нужными гладкостями и ты. пы.) кривизну как тензорное поле на координатной карте, то будет существовать многообразие с ней.
Именно метрическое? Дело в том, что тензор кривизны можно сконструировать таким образом, что перенос вектора $A^i$ по некоему малому замкнутому контуру будет эквивалентен преобразованию: $A^i \mapsto (1 + \delta a) A^i$. А это в некотором смысле означает, что как бы мы ни определяли длину оного вектора, после переноса по оному контуру она не сохранится.

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение27.05.2015, 13:46 
Аватара пользователя
Честно говоря, слышал я давно и подробностей не помню. Может быть, там вообще речь шла не о полном тензоре кривизны, а о чём-то свёрнутом. Хотя вряд ли бы оно меня тогда так впечатлило.

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение27.05.2015, 13:49 
Аватара пользователя
epros в сообщении #1020326 писал(а):
тензор кривизны можно сконструировать таким образом, что перенос вектора $A^i$ по некоему малому замкнутому контуру будет эквивалентен преобразованию

Он же тогда симметриям (по индексам) не будет удовлетворять?

 
 
 
 Re: Параллельный перенос вдоль пути на поверхности
Сообщение27.05.2015, 14:03 
условия интегрируемости системы уравнений
$$\nabla_k g_{ij}=\frac{\partial g_{ij}}{\partial x^k}-\Gamma_{ik}^lg_{lj}-\Gamma_{jk}^lg_{il}=0$$
эквивалентны хорошо известному равенству $$R_{iqkl}=-R_{kliq}\qquad (*).$$ Условие
lek в сообщении #1018991 писал(а):
ие $\Gamma_{ij}^{k}+\Gamma_{ik}^{j}=0$

обеспечивает выполнение равенства (*) при любом $g_{ij}$

чтд

 
 
 [ Сообщений: 173 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 12  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group