На самом деле нельзя любого — только математические, потому что, как ни странно или банально, «не математические объекты» в математику не входят.
Прошу прощения, но это не аргумент.
Натуральные числа можно использовать для счёта
любых объектов. Не только математических.
Интегрировать можно любые скалярные и векторные величины (если подходящим образом задать их — в виде функций). Например, потенциал электростатического поля в данной точке — это интеграл от напряжённости поля по любой кривой, начинающейся в этой точке и уходящей в бесконечность. При этом, очевидно, напряжённость электростатического поля — не математическое понятие (объект).
Средствами алгебры логики можно решать логические задачи, устанавливать истинность высказываний. При этом понятие "истинность", строго говоря, лежит вне математики.
Примеры продолжить нетрудно.
Я против именно названия, поскольку именно такое название и спутывает людей обычно. Название «задающая формула», например, не имеет никаких претензий к пониманию элементов множества как «похожих» на чей-то вкус.
Но разве любое свойство можно естественно выразить какой-либо формулой? Иногда гораздо проще (и удобнее для последующего восприятия) это свойство описать словами. Например, можно определить множество простых чисел как множество тех и только тех натуральных чисел, которые имеют ровно два делителя. Можно, конечно, построить "задающую формулу", но... тогда нужно вводить функцию "число делителей", которую требуется либо описывать словами (а это эквивалентно исходному, словесному описанию), либо строить алгоритм, вычисляющий значения этой функции (что лишено даже тени наглядности)...
Что значат слова «понятие противоречиво»?
Вероятно (в зависимости от контекста), это может означать следующее:
1. Данному понятию не соответствует никакой объект.
2. Использование этого понятия (формальное обращение с ним) ведёт к противоречию.
3. Возможно, что-то ещё.
Лично я имел в виду вторую ситуацию из этого списка. А что имеют в виду другие люди, использующие это выражение, — об этом лучше спросите их самих.