Свойство, которое невозможно выразить формулой, однозначно определить словами также вряд ли удастся.
Ну, во-первых, я не говорил "невозможно выразить формулой". Я говорил "проще и удобнее выразить словами", что не то же самое.
Во-вторых, я ведь привёл пример: множество простых чисел. Его удобнее описать словами, чем формулами.
Во всех этих «примерах» вы смешиваете реальность и её модели. Это ужасно.
Ну, ужасно, так ужасно. Что поделаешь...
Вообще-то, я отдаю себе отчёт в том, что математика имеет дело с реальностью не напрямую, а через модели.
Но тогда тем более загадочно, почему множества (математические модели) нельзя сопоставлять объектам реального мира (не математическим объектам). Модели ведь для того и вводят, чтобы как-то сопоставлять их с реальностью.
Цитата:
Не в любой теории любое, но словами большего тоже не добиться.
В каком смысле "большего"? Я говорил о том, что словесные (бесформульные) описания порой случаются более удобными для восприятия.
Цитата:
Именно алгоритм строить совершенно не обязательно
Пусть так. Но есть ли здесь более простое описание, чем словесное?
Цитата:
совершенно резонно появляется вопрос, а может ли использование какого-то понятия привести к противоречию.
А разве использование понятий "множество всех множеств" или "множество всех нормальных множеств" не ведёт к противоречию? (Под "нормальными" понимаются множества, которые не содержат сами себя в качестве своего элемента).
Цитата:
Насчёт первого варианта, мне казалось, у философов для таких понятий есть своё название, и даже они от таких понятий, вроде, не бегали.
Вероятно, так. Впрочем, я и не призывал никого бегать от понятий...