2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 40, 41, 42, 43, 44, 45, 46, 47  След.
 
 Re: Модифицировать программу (практическая помощь)
Сообщение06.09.2015, 07:42 


10/07/15
286
Отличная идея!
Удивительно что для $n=20$ и $n=22$ диаметры совпадают

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение06.09.2015, 09:11 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Вот какие паттерны с минимальным диаметром 142 для $k=28$ нашла моя программа:
Код:
0  4  10  12  18  24  28  30  34  40  42  48  52  70  72  90  94  100  102  108  112  114  118  124  130  132  138  142
0  4  10  12  18  24  28  30  34  40  42  52  54  70  72  88  90  100  102  108  112  114  118  124  130  132  138  142
0  4  10  12  18  24  28  30  34  40  48  52  54  70  72  88  90  94  102  108  112  114  118  124  130  132  138  142
0  4  10  12  18  24  28  30  34  40  52  54  58  70  72  84  88  90  102  108  112  114  118  124  130  132  138  142
0  4  10  12  18  28  30  34  40  42  48  52  54  70  72  88  90  94  100  102  108  112  114  124  130  132  138  142

Для не симметричных кортежей длины 28 из последовательных простых чисел минимальный диаметр равен 126.
Кортеж мне неизвестен. По-моему, его ещё не нашли.

Минимальная (по значению элементов кортежа) КПППЧ длины 28 тоже не найдена.
Запущу сейчас поиск паттернов для $k=30$.
Потом ещё $k=29$ останется, но пока программа настроена на чётные длины (для нечётных длин искать быстрее, там все разности кратны 6).
Тогда до $k=30$ включительно будут найдены теоретические паттерны с минимальным диаметром.
В конкурсе предлагается искать кортежи до длины $k=50$. Но, думаю, что и до длины $k=30$ найти их не так просто.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение06.09.2015, 13:45 
Заслуженный участник


20/08/14
11966
Россия, Москва
Задачу про близнецов, их кстати логично называть КППППЧБ (Комплементарные Последовательные Пары Последовательных Простых Чисел-Близнецов), можно упростить, разрешив между парами близнецов встречаться и обычным простым числам (но конечно в кортеже их не использовать). И назвать это КПППЧБ (без второго слова последовательные).
И ещё сильнее упростить, разрешив использовать не обязательно последовательные пары чисел-близнецов. Последнее тогда назвать КППЧБ (без слов последовательные вообще). ;-)

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение06.09.2015, 14:12 


10/07/15
286
Можно использовать $3,5$ и любые близнецы из 9 цифр? Не... где-то "последовательные " нужно оставить

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение07.09.2015, 06:30 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Begemot82 в сообщении #1050921 писал(а):
Можно использовать $3,5$ и любые близнецы из 9 цифр?

Можно, я разрешаю :lol:
Цитата:
Не... где-то "последовательные " нужно оставить

Не... лучше не надо :mrgreen:

-- Пн сен 07, 2015 07:37:49 --

Вчера на поиске паттернов для $k=30$ вырубили электричество.
Уже несколько паттернов выдалось с минимальным диаметром 146, но до конца программа не отработала.
Запустила сейчас снова. Ну, финиш уже виден.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение07.09.2015, 07:52 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Ну, вот и финиш. Паттерны найдены такие:
Код:
0  2  6  12  14  20  26  30  32  36  42  44  50  54  72  74  92  96  102  104  110  114  116  120  126  132  134  140  144  146
0  2  6  12  14  20  26  30  32  36  42  44  54  56  72  74  90  92  102  104  110  114  116  120  126  132  134  140  144  146
0  2  6  12  14  20  26  30  32  36  42  54  56  60  72  74  86  90  92  104  110  114  116  120  126  132  134  140  144  146
0  2  6  12  14  20  30  32  36  42  44  50  54  56  72  74  90  92  96  102  104  110  114  116  126  132  134  140  144  146

Для не симметричных коретежей длины 30 из последовательных простых чисел минимальный диаметр равен 136 согласно последовательности OEIS A008407.
Кортеж с таким диаметром не найден, насколько мне известно.

КПППЧ длины 30 с минимальными значениями элементов кортежа (с любым диаметром) тоже не найдена.

Сейчас запущу поиск потенциальных паттернов для КПППЧ длины 29.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение08.09.2015, 13:19 
Заслуженный участник


20/08/14
11966
Россия, Москва
Nataly-Mak в сообщении #1050657 писал(а):
Carlos Rivera сегодня опубликовал проблему:
Problem 62. Symmetric k-tuples of consecutive primes http://www.primepuzzles.net/problems/prob_062.htm
Dmitriy40 в сообщении #1050731 писал(а):
Если что, я заслал туда на почту минимальные решения для n=11,12,13,14,16.
Что показательно, с 5-го сентября и до сих пор нет даже подтверждения получения письма. Вот и шли после этого решения указанным на сайте способом ...

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение09.09.2015, 20:50 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Наконец-то, программа вырулила на минимальный диаметр для КПППЧ длины 29:
Код:
0  30  36  42  60  72  96  102  120  156  162  186  222  240  246  252  270  306  330  336  372  390  396  420  432  450  456  462  492
0  30  36  42  60  72  102  120  156  162  180  186  222  240  246  252  270  306  312  330  336  372  390  420  432  450  456  462  492

Надеюсь, не наврала :?

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение09.09.2015, 22:08 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
А тем временем пройдено ещё 100 триллионов.
По-прежнему ничего нет интересного.
Сегодня напала на злачное место :-) есть даже 20-ка, что у меня бывает крайне редко.

Изображение

Но... посмотрите, как упрямо обходятся КПППЧ нечётных длин, ну нет, нет и нет :cry:
А я всё ещё не теряю надежды найти хоть одну 17-ку.
18-ку недавно нашла более-менее компактную, хотя до самой компактной ох как далеко:
Код:
100300671847374491: 0 6 8 20 36 38 56 78 80 108 110 132 150 152 168 180 182 188

Радует, что скорость пока не падает, стабильно около триллиона в час.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение10.09.2015, 06:21 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Поехали! :D
http://primesmagicgames.altervista.org/wp/competitions/

Дамы и господа!
Не пропустите конкурс с интереснейшей задачей.

Некоторых форумчан уже пригласила лично, всех пока не успела. С нетерпением ждала начала конкурса.
ice00 молодец, он справился!
Программа приёма и проверки решений очень сложная. Впервые используется обращение к внешнему сервису Wolfram Alpha.

Конкурс продлится до 31 декабря текущего года. Времени много у всех.
Пожалуйста, задавайте ваши вопросы по конкурсным задачам, их три.
Если при вводе решений возникнет ошибка, пожалуйста, воспользуйтесь кнопкой "Contact", чтобы написать ice00 об ошибке.
Это должно работать; правда, я сама этой кнопкой ни разу не пользовалась, потому что переписываюсь с ice00 напрямую.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение10.09.2015, 08:43 
Аватара пользователя


10/11/12
121
Бобруйск
Nataly-Mak в сообщении #1052042 писал(а):
Наконец-то, программа вырулила на минимальный диаметр для КПППЧ длины 29:
Код:
0  30  36  42  60  72  96  102  120  156  162  186  222  240  246  252  270  306  330  336  372  390  396  420  432  450  456  462  492
0  30  36  42  60  72  102  120  156  162  180  186  222  240  246  252  270  306  312  330  336  372  390  420  432  450  456  462  492

Надеюсь, не наврала :?

Подтверждаю ваши минимальные диаметры для всех $k\leqslant30$

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение10.09.2015, 08:46 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Vovka17
большое спасибо!

Надеюсь, что найденные теоретические паттерны помогут участникам конкурса искать кортежи с минимальным диаметром (конкурсная задача #2).
Правда, пока найдены паттерны для КПППЧ длин до 30 включительно.
В конурсе же требуется искать кортежи до $k=50$.
Ну, я думаю, что и до длины 30 добраться будет непросто :-) Может быть, ошибаюсь.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.09.2015, 16:37 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Посмотрите все, пожалуйста, в проблему
http://www.primepuzzles.net/problems/prob_062.htm
В описании чётко написано:
Цитата:
Known solutions with a minimal diameter and a minimal value of p for k = 2, 4, 6, 8 see in [1]

Ссылка дана на авторитетный источник - англоязычную Википедию. Именно по статье в Википедии (по указанной ссылке) даны определения в описании задачи.
Сегодня появились решения.
Решения от второго puzzler:
Цитата:
gogolmogol16@mail.ru

Known solutions with a minimal diameter and a minimal value of p for k = 2, 4, 6, 8 see in [1]

solutions with a minimal diameter and a minimal value
k = 2 - p=2,d=1 A081235 (1)=(2,3), no (3,5)
k = 6 - p=5,d=14 A081235 (3)=(5,7,11,13,17,19), no (7, 11, 13, 17, 19, 23)

Вот что я вам скажу,
Begemot82 = DanilovV = gogolmogol16
очень умно!

Я Carlos сообщила ваше настоящее имя, он должен знать своих умников!

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.09.2015, 17:15 
Заслуженный участник


20/08/14
11966
Россия, Москва
Ну ваще! Ещё и адрес почты светят без спроса и малейшего предупреждения! Совсем уже хамство! :evil: :facepalm: И ещё меня упрекаете в дурном тоне ... :mrgreen:
Во всём интернете давным давно специально предупреждают о (не)доступности email всем остальным, отдельные галочки в настройках заводят, а тут внаглую публикуют и не краснеют. :shock:

И между прочим, в моём письме вполне было себе имя, так что оно вовсе не
Цитата:
but I have no names from them:
!!
И в любом случае даже полное отсутствие имени не может являться оправданием публикации приватной информации (личный email) без явного на то разрешения! Которого с моей стороны не было.

Публикация же второго contribution вообще смысла не имеет, т.к. не отвечает условиям конкурса (по k), а обсуждение условий (и примеров их иллюстрирующих) к contribution не относится и должна производиться как-то очень отдельно.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение14.09.2015, 17:35 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Carlos Rivera опубликовал сегодня мой комментарий:

Цитата:
“solutions with a minimal diameter and a minimal value

k = 2 - p=2,d=1 A081235 (1)=(2,3), no (3,5)

k = 6 - p=5,d=14 A081235 (3)=(5,7,11,13,17,19), no (7, 11, 13, 17, 19, 23)”

This is the wrong solutions.

In the sequence http://oeis.org/A008407 we see:

k=2, d=2

k=6, d=16

It is right.

Solutions in Wikipedia

[1] https://en.wikipedia.org/wiki/Prime_k-tuple

k=2 d=2 (0, 2) (3, 5)

k=6 d=16 (0, 4, 6, 10, 12, 16) (7, 11, 13, 17, 19, 23)

It is right.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 695 ]  На страницу Пред.  1 ... 40, 41, 42, 43, 44, 45, 46, 47  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: HungryLion


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group