2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8, 9 ... 14  След.
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение06.06.2013, 16:51 
vicvolf в сообщении #733556 писал(а):
tolstopuz в сообщении #733553 писал(а):
Покажите обоснование, и мы вместе его рассмотрим.
Надеюсь Вы не отрицаете, что события $A_1$ и $A_2$ зависимы?
Этот факт вами не доказан (утверждение о нечетности тривиально и ничего не доказывает), но интуиция заставляет меня предполагать, что это так.

Кроме того, вы опять пытаетесь скрыть, что рассматриваете не одну вероятностную меру, а семейство, зависящее от $x$. Это означает, что ваша $C$ тоже является функцией от $x$, что лишает ваши рассуждения связи со статьей, на которую вы ссылаетесь, так как там $C$ - константа, а также делает неверными все ваши дальнейшие рассуждения с о-малыми. Я предупреждал об этом вначале, когда вы вводили вместо одной меры семейство.

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение06.06.2013, 17:17 
tolstopuz в сообщении #733572 писал(а):
vicvolf в сообщении #733556 писал(а):
tolstopuz в сообщении #733553 писал(а):
Покажите обоснование, и мы вместе его рассмотрим.
Надеюсь Вы не отрицаете, что события $A_1$ и $A_2$ зависимы?
Этот факт вами не доказан (утверждение о нечетности тривиально и ничего не доказывает), но интуиция заставляет меня предполагать, что это так.

Если число х -простое, то х+2 достоверно нечетно. Разве вероятность нечетного числа быть простым не больше, чем вероятность натурального числа быть простым? Да конечно при условии, что х+2 нечетно, но ведь это зависит от того, какое х простое или нет - вот Вам и зависимость событий $A_2$ от $A_1$
Цитата:
Кроме того, вы опять пытаетесь скрыть, что рассматриваете не одну вероятностную меру, а семейство, зависящее от $x$. Это означает, что ваша $C$ тоже является функцией от $x$, что лишает ваши рассуждения связи со статьей, на которую вы ссылаетесь, так как там $C$ - константа, а также делает неверными все ваши дальнейшие рассуждения с о-малыми. Я предупреждал об этом вначале, когда вы вводили вместо одной меры семейство.

Мы рассматриваем достаточно большое х по сравнению с числом 2, поэтому это справедливо. Я делаю предположение, что длина кортежа мала по сравнению с х.

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение06.06.2013, 18:06 
vicvolf в сообщении #733574 писал(а):
Если число х -простое, то х+2 достоверно нечетно. Разве вероятность нечетного числа быть простым не больше, чем вероятность натурального числа быть простым?
Мы уже обсуждали это в личной переписке, вы убедились в ошибочности вашего рассуждения, но теперь вы опять начинаете все сначала.

Давайте обозначим упоминаемые вами события буквами:

$A_1$: число $x$ простое.
$A_2$: число $x+2$ простое.
$A_3$: число $x+2$ нечетное.

У вас есть очевидный факт, что вероятность нечетного числа быть простым больше, чем вероятность натурального числа быть простым: $Pr(A_2/A_3) > Pr(A_2)$.
У вас есть еще один очевидный факт, что за простым числом заведомо следует нечетное: $Pr(A_3/A_1) = 1$.
После этого вы утверждаете, что вероятность найти простое число после другого простого числа больше, чем в чистом поле: $Pr(A_2/A_1) > Pr(A_2)$. На каком основании вы делаете этот вывод?

vicvolf в сообщении #733574 писал(а):
Мы рассматриваем достаточно большое х по сравнению с числом 2, поэтому это справедливо.
Если вы используете о-нотацию, забудьте про заклинание "достаточно большое".

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение06.06.2013, 19:56 
tolstopuz в сообщении #733594 писал(а):
vicvolf в сообщении #733574 писал(а):
Если число х -простое, то х+2 достоверно нечетно. Разве вероятность нечетного числа быть простым не больше, чем вероятность натурального числа быть простым?
Мы уже обсуждали это в личной переписке, вы убедились в ошибочности вашего рассуждения, но теперь вы опять начинаете все сначала.

Давайте обозначим упоминаемые вами события буквами:

$A_1$: число $x$ простое.
$A_2$: число $x+2$ простое.
$A_3$: число $x+2$ нечетное.

У вас есть очевидный факт, что вероятность нечетного числа быть простым больше, чем вероятность натурального числа быть простым: $Pr(A_2/A_3) > Pr(A_2)$.
У вас есть еще один очевидный факт, что за простым числом заведомо следует нечетное: $Pr(A_3/A_1) = 1$.
После этого вы утверждаете, что вероятность найти простое число после другого простого числа больше, чем в чистом поле: $Pr(A_2/A_1) > Pr(A_2)$. На каком основании вы делаете этот вывод?

Из выполнения события $A_1$ достоверно следует событие $A_3$. При выполнении события $A_3$ меняется вероятность события $A_2$. Поэтому, при выполнении события $A_1$ меняется вероятность события $A_2$. Следовательно события $A_2$ и событие $A_1$ зависимы.

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение06.06.2013, 22:15 
Аватара пользователя
vicvolf в сообщении #733653 писал(а):
Следовательно события $A_2$ и событие $A_1$ зависимы.

vicvolf
Извините, что вмешиваюсь в вашу дискуссию. Однако...
И какова же эта зависимость между событиями $A_1$ и $A_2$? Вам известен закон распределения простых чисел-близнецов?
Это очень интересно :-)

Меня этот вопрос интересует вот почему.
Мне нужен большой массив простых чисел-близнецов. Товарищ нашёл в Интернете массив из 100 000 чисел-близнецов (только первые числа из пар близнецов). Этого мало.
Спрашивается: какой массив простых чисел мне нужен для того, чтобы найти, скажем, 200 000 простых чисел-близнецов :?:
Я думаю, что точного ответа на этот вопрос не существует, но могу ошибаться.

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение06.06.2013, 22:33 
Простых чисел до 50млн должно хватить.

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение06.06.2013, 22:39 
Аватара пользователя
Спасибо, попробую.

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение07.06.2013, 07:08 
vicvolf в сообщении #733653 писал(а):
tolstopuz в сообщении #733594 писал(а):
vicvolf в сообщении #733574 писал(а):
Если число х -простое, то х+2 достоверно нечетно. Разве вероятность нечетного числа быть простым не больше, чем вероятность натурального числа быть простым?
Мы уже обсуждали это в личной переписке, вы убедились в ошибочности вашего рассуждения, но теперь вы опять начинаете все сначала.

Давайте обозначим упоминаемые вами события буквами:

$A_1$: число $x$ простое.
$A_2$: число $x+2$ простое.
$A_3$: число $x+2$ нечетное.

У вас есть очевидный факт, что вероятность нечетного числа быть простым больше, чем вероятность натурального числа быть простым: $Pr(A_2/A_3) > Pr(A_2)$.
У вас есть еще один очевидный факт, что за простым числом заведомо следует нечетное: $Pr(A_3/A_1) = 1$.
После этого вы утверждаете, что вероятность найти простое число после другого простого числа больше, чем в чистом поле: $Pr(A_2/A_1) > Pr(A_2)$. На каком основании вы делаете этот вывод?

Из выполнения события $A_1$ достоверно следует событие $A_3$. При выполнении события $A_3$ меняется вероятность события $A_2$. Поэтому, при выполнении события $A_1$ меняется вероятность события $A_2$. Следовательно события $A_2$ и событие $A_1$ зависимы.

Во первых, у вас вероятность есть только в смысле нормированной частоты. Тем не менее придержусь вашей терминологии "вероятности, события".
Из события следует событие $A_3$ за одним исключением $x=2$, т.е. не совсем достоверно следует

Из выполнения события $A_1$ достоверно следует событие $A_3$.

Согласен со вторым утверждением. Добавим в два раза (считаю х -натуральным).
Нет логики в следующих предложениях.

Поэтому, при выполнении события $A_1$ меняется вероятность события $A_2$.

Возьмите например подмножество $A_1$
$A_4$ - число $x$ простое число вида $6k+1$.
И поробуйте то же самое проигрывать с $A_4$ вместо $A_1$.
У вас получится $Pr(A_2/A_4)>Pr(A_2)$ - полная чушь.

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение07.06.2013, 08:41 
Nataly-Mak в сообщении #733739 писал(а):
какой массив простых чисел мне нужен для того, чтобы найти, скажем, 200 000 простых чисел-близнецов

По оценке В.Бруна при $x=2\cdot 10^8,\;\;\pi_2(x)\leqslant 3\cdot 10^5.$

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение07.06.2013, 10:10 
Аватара пользователя
vorvalm в сообщении #733854 писал(а):
Nataly-Mak в сообщении #733739 писал(а):
какой массив простых чисел мне нужен для того, чтобы найти, скажем, 200 000 простых чисел-близнецов

По оценке В.Бруна при $x=2\cdot 10^8,\;\;\pi_2(x)\leqslant 3\cdot 10^5.$

Гадаю :-)
$x=2\cdot 10^8$ - это количество натуральных чисел, среди которых я должна найти все простые числа?

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение07.06.2013, 10:44 
Nataly-Mak в сообщении #733880 писал(а):
vorvalm в сообщении #733854 писал(а):
Nataly-Mak в сообщении #733739 писал(а):
какой массив простых чисел мне нужен для того, чтобы найти, скажем, 200 000 простых чисел-близнецов

По оценке В.Бруна при $x=2\cdot 10^8,\;\;\pi_2(x)\leqslant 3\cdot 10^5.$

Гадаю :-)
$x=2\cdot 10^8$ - это количество натуральных чисел, среди которых я должна найти все простые числа?

Если вам нужны только близнецы, то лучше применять решето Эратосфена исключая по каждому простому $p<\sqrt N$ сразу два вычета $0$ и $p-2$ и легко переберете нужное количество близнецов хоть до миллиада.
Оценка Бруна хорошо работает по крайней мере до миллиарда. Кстати согласно оценке Бруна
(1) $Pr(A_2/A_1)<Pr(A_2)$ в протиположность vicvolf.
Причем это не только согласно этой гипотезе. Оценка сверху для близнецов доказанный факт, а не гипотеза.
Т.е. (1) является доказанным утверждением.

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение07.06.2013, 12:23 
Аватара пользователя
Чувствую себя несколько неловко, что влезла со своей практической проблемой в теоретическую дискуссию. Ещё раз прошу прощения у ТС.

Проблема моя, наверное, не такая уж сложная, но я всё порядком забыла.
Теперь сижу и думаю, с какого конца начать решение.

1. С решетом Эратосфена в принципе знакома, но программную реализацию этого метода не делала. Писала давно программу для решета Сундарама (где-то здесь эту программу приводила, в Википедии она тоже есть). Но эта программа у меня плохо работала для больших N.
Коллега давно присылал мне программу тоже для решета Сундарама, которая работала быстро для достаточно больших N, но эта программа у меня пропала, когда сдох старый компьютер.

2. Программу поиска близнецов среди массива простых чисел написала, опробовала её на том небольшом массиве простых чисел, который у меня есть, она нормально работает, близнецов выбирает. Ну, тут нет ничего сложного. Правда, не знаю, как хорошо она будет работать, когда количество простых будет довольно большим.

3. Пыталась найти в Интернете большой массив простых чисел, с ходу не получилось.
Значит, надо самой генерировать этот массив.

Вот нашла свою программку генерации простых чисел (решето Сундарама) :-)
post218607.html
Было это так давно, аж в 2009 г.
Программа написана на Бейсике и любезно переписана участниками на другие языки.

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение07.06.2013, 12:40 
Оценка В.Бруна дает число простых близнецов в массиве натуральных чисел.

$\pi_2(x)\leqslant \frac{xe^{-\gamma}}{\ln^2x},\;e^{-\gamma}\approx 0,56.$

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение07.06.2013, 12:44 
Аватара пользователя
Понятно. Спасибо. Это мне подходит :-)

 
 
 
 Re: Асимптотическая плотность послед-ности и гипотезы о простых
Сообщение07.06.2013, 13:52 
Аватара пользователя
Небольшой эксперимент
сгенерировала по своей программе массив простых в интервале (1,500 000).
Получилось 41534 простых числа, это выполнилось быстро.
По программе поиска близнецов среди простых выбрала близнецов; программа с таким массивом справилась мгновенно, нашла 4565 пар близнецов.
Проверила по имеющемуся у меня массиву близнецов (100 000), всё вроде правильно.
Дело за генерацией большого массива простых чисел :-) (до 50 млн., говорят, должно хватить).

Вот "хвост" полученного программой массива близнецов (записываются только первые числа из пар близнецов):

Код:
...
497111
497279
497507
497771
497867
498101
498257
498401
498467
498521
498611
498689
498779
498857
499127
499139
499157
499181
499361
499481
499661
499691
KOLICHESTVO PAR BLIZNECOV 4565

 
 
 [ Сообщений: 205 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8, 9 ... 14  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group