2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8  След.
 
 Re: Теорема Ферма и теорема косинусов
Сообщение31.08.2012, 12:04 
Заблокирован


27/08/12

23
Уважаемый Someone!
Косоугольный треугольник со сторонами $25, 36, 49$ существует, но приведенное соотношение чисел не удовлетворяет уравнению теоремы Ферма для степени $n=4$: $25^4+36^4=2070241 =(37,9319549...)^4 $.
$P.S.$ Я не претендую на доказательство теоремы Ферма, я всего лишь рассматриваю вопрос: может ли уравнение теоремы косинусов быть преобразовано в уравнение теоремы Ферма при условии, что стороны косоугольного треугольника имеют целочисленное значение.

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение31.08.2012, 12:23 
Заслуженный участник


12/09/10
1515
Может. И здесь уже было показано, что существование решений уравнения для $n=4$ равносильно существованию треугольника с целочисленными сторонами, в котором выполняется равенство
$4(a^2+b^2)ab\cos\gamma -2a^2b^2(1+2\cos^2\gamma)=0$
И было сказано, что ни к чему хорошему это не приведет.
И доказательство не будет проще (если будет вообще!) известного вполне элементарного доказательства для случая $n=4$

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение31.08.2012, 15:06 
Заслуженный участник
Аватара пользователя


23/07/05
16159
Новомосковск
klitemnestr в сообщении #612908 писал(а):
Косоугольный треугольник со сторонами $25, 36, 49$ существует, но приведенное соотношение чисел не удовлетворяет уравнению теоремы Ферма для степени $n=4$
Ну и что? Во-первых, Вы пишете теорему косинусов для $a$, $b$, $c$, а не для $a^2$, $b^2$, $c^2$, так что стороны не обязаны быть квадратами. Во-вторых, из того, что данный конкретный набор чисел не удовлетворяет уравнению, не следует, что и никакой другой набор не удовлетворяет уравнению.

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение31.08.2012, 15:30 
Заслуженный участник


12/09/10
1515
klitemnestr в сообщении #612908 писал(а):
приведенное соотношение чисел не удовлетворяет уравнению теоремы Ферма для степени $n=4$:

Уже 3 с половиной сотни лет известно, что и не найдется таких чисел...
Есть какие-нибудь свежие идеи?

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение31.08.2012, 17:01 


16/08/09
304
Cash в сообщении #612970 писал(а):
Есть какие-нибудь свежие идеи?


Уважаемый Cash! За 3 с половиной сотни лет после Эйлера, Куммера, Софи Жермен? :shock: Ну уж вряд ли :D
Хотя дискуссия была чрезвычайно полезной!

-- Пт авг 31, 2012 18:36:29 --

Но вот интересная цитата от Серпински:
"Для случая $n=3$ из Великой теоремы Ферма А.Вакулич элементарным путем доказал, что нет пифагоровых треугольников, у которых катеты - кубы целых чисел."
Кто-нибудь видел это доказательство? Используется ли в нем теорема косинусов?

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение31.08.2012, 18:31 


16/03/07

823
Tashkent
klitemnestr в сообщении #612908 писал(а):
Уважаемый Someone!
Косоугольный треугольник со сторонами $25, 36, 49$ существует, но приведенное соотношение чисел не удовлетворяет уравнению теоремы Ферма для степени $n=4$: $25^4+36^4=2070241 =(37,9319549...)^4 $.
$P.S.$ Я не претендую на доказательство теоремы Ферма, я всего лишь рассматриваю вопрос: может ли уравнение теоремы косинусов быть преобразовано в уравнение теоремы Ферма при условии, что стороны косоугольного треугольника имеют целочисленное значение.

    Может, только при этом из теоремы косинусов получится условие, при котором это будет возможно. А это условие будет невыполнимо.

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение01.09.2012, 10:14 
Заблокирован


27/08/12

23
Cash-y
Разность между числами может быть равна $0$, если это:
1. Равные по величине целые числа. В рассматриваемом случае $4(a^2+b^2)ab\cos\gamma$ и $2a^2b^2(1+2\cos^2\gamma)$ являются целыми числами, если угол $\gamma=60^0$. При этом имеем: $2(a^2+b^2)ab-3a^2b^2 =z$, где $z$ в данном случае не равно нолю.
2. Равные по величине рациональные дробные числа. В рассматриваемом случае величины $4(a^2+b^2)ab\cos\gamma$ и $2a^2b^2(1+2\cos^2\gamma)$ содержат единственный общий делитель $2ab$, и, главное, содержат $\cos\gamma$ и $\cos^2\gamma$ соответствено. Поэтому они не могут быть преобразованы в равные по величине рациональные дробные числа.
Следовательно, величина $z=4(a^2+b^2)ab\cos\gamma-2a^2b^2(1+2\cos^2\gamma)$ может с какой угодно точностью приближаться к нолю, но никогда не равна нолю.
Кстати: Величина $z$ преобразуется следующим образом: $z= 4ab\cos\gamma[(a^2+b^2)-ab\cos\gamma]-2a^2b^2$. Получается, что из дробного числа вычитается целое число. Так что число $z\ne0$.

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение01.09.2012, 10:41 
Заслуженный участник
Аватара пользователя


23/07/05
16159
Новомосковск
klitemnestr в сообщении #613270 писал(а):
Разность между числами может быть равна $0$, если это:
1. Равные по величине целые числа.
Совершенно не обязательно целые. Целыми должны быть $a$, $b$, $c$. По условию. Про любые другие нужно доказывать, что они целые. У Вас же доказательства нет, только голословное заявление.

klitemnestr в сообщении #613270 писал(а):
В рассматриваемом случае $4(a^2+b^2)ab\cos\gamma$ и $2a^2b^2(1+2\cos^2\gamma)$ являются целыми числами, если угол $\gamma=60^0$.
А если угол не 60°?

klitemnestr в сообщении #613270 писал(а):
В рассматриваемом случае величины $4(a^2+b^2)ab\cos\gamma$ и $2a^2b^2(1+2\cos^2\gamma)$ содержат единственный общий делитель $2ab$, и, главное, содержат $\cos\gamma$ и $\cos^2\gamma$ соответствено. Поэтому они не могут быть преобразованы в равные по величине рациональные дробные числа.
Чушь на уровне школьника младших классов.

klitemnestr в сообщении #613270 писал(а):
Следовательно, величина $z=4(a^2+b^2)ab\cos\gamma-2a^2b^2(1+2\cos^2\gamma)$ может с какой угодно точностью приближаться к нолю, но никогда не равна нолю.
Определите угол $\gamma$ формулой, которую Вам уже писали, и получите точное равенство нулю.

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение01.09.2012, 11:03 
Заблокирован


27/08/12

23
Для Someone
Посмотрите дополненный текст моего последнего сообщения.

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение01.09.2012, 17:15 
Заслуженный участник
Аватара пользователя


23/07/05
16159
Новомосковск
klitemnestr в сообщении #613270 писал(а):
Кстати: Величина $z$ преобразуется следующим образом: $z= 4ab\cos\gamma[(a^2+b^2)-ab\cos\gamma]-2a^2b^2$. Получается, что из дробного числа вычитается целое число.
Чушь на совершенно детском уровне. С чего Вы взяли, что число $4ab\cos\gamma[(a^2+b^2)-ab\cos\gamma]$ дробное? $2ab\cos\gamma=a^2+b^2-c^2$ - целое число.

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение01.09.2012, 17:28 


26/08/11
1734
klitemnestr в сообщении #613270 писал(а):
Cash-y
Разность между числами может быть равна $0$, если это:
1. Равные по величине целые числа. В рассматриваемом случае $4(a^2+b^2)ab\cos\gamma$ и $2a^2b^2(1+2\cos^2\gamma)$ являются целыми числами, если угол $\gamma=60^0$.
Т.е $\cos\gamma=\frac 1 2$. А если $\cos\gamma=\frac 1 3?$ Или 7/23 или 125/468?

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение01.09.2012, 18:20 
Заблокирован


27/08/12

23
Для Someone
Допустим, что $z=0$. Тогда из приведенной мною выше формулы $c^4=a^4+b^4-z$, полученной возведением в квадрат уравнения теоремы косинусов, следует, что $c^4=a^4+b^4$ для любых чисел [a, b].

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение01.09.2012, 19:33 
Заслуженный участник
Аватара пользователя


23/07/05
16159
Новомосковск
Да, следует. А в чём проблема?

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение02.09.2012, 09:49 
Заблокирован


27/08/12

23
Проблема в том, что до сих пор не найдено целочисленное решение уравнения
$c^4=a^4+b^4$. Наоборот, доказано, что это уравнение не имеет решения в целых числах.

 Профиль  
                  
 
 Re: Теорема Ферма и теорема косинусов
Сообщение02.09.2012, 10:03 
Заслуженный участник
Аватара пользователя


23/07/05
16159
Новомосковск
klitemnestr в сообщении #613740 писал(а):
Проблема в том, что до сих пор не найдено целочисленное решение уравнения
$c^4=a^4+b^4$.
Мало ли чего не найдено. Это, с точки зрения необходимости доказательства, ничего не значит.

klitemnestr в сообщении #613740 писал(а):
Наоборот, доказано, что это уравнение не имеет решения в целых числах.
Вы ведь именно это хотите доказать. Поэтому ссылаться на это не имеете права. Если Вы доказываете какую-нибудь теорему, то Вы не имеете права ссылаться на то, что она верна.

Это всё означает в данном случае, что Вы не имеете права произносить слова "числа $a$, $b$, $c$ не могут быть целыми все одновременно". До тех пор, пока не закончите доказательство.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 116 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: serval


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group