Цитата:
Равноускоренный заряд излучает в том смысле, что вектор Пойтинга через окружающую его поверхность отличен от нуля.
Могу Вам дать ссылку на основного критика Логунова Гинзбурга. УФН 195 , т. 165, №2, стр. 205.
Я как раз не претендую на очень хорошее знание ОТО, поскольку сложно разобраться с теорией , где есть явные противоречия. Поэтому я и обращаюсь к специалистам, и я вижу, что участники дискуссии не могут определиться даже с базовым принципом теории : принципом эквивалентности.
За что я люблю теоретиков, они могут сконструировать ситуацию, когда , перефразируя Гильберта, их печной трубы будут вылетать черти. Вы придумали модель неэквивалентную модели пространства-времени Минковского и почему -то хотите чтобы какие-то явления были и там и там одинаковые. Мне это очевидно, что что-то будет совпадать, а что-то нет. Даже положив g=0 вы не востановите в полном объеме Минковского. Это очевидно, потому что Вы вырезали эту область между D1 и D2 по определению задачи.
-- Когда мы находим полную энергию электростатического поля заряженного шарика, мы пользуемся одной конкретной формулой, а когда внешнее гравитационное поле шарика , то мне предлагают по меньшей мере 3 формулы ( а VLAD_TK еще больше). Спрашивается где однозначность и элегантность теории?
-- 28.02.2012, 19:42 --Цитата:
="VladTK в
сообщении #543235"]
Если Давид Гильберт - один из создателей ОТО, не понимал ее (по Вашему), то кто ее тогда понимает? Позвольте не поверить Вашим словам, а поверить словам Гильберта (тем более они уже многократно перепроверены, в том числе и мной).
Ради объективности процитирую запутанную цитату Гильберта из второго сообщения 1924, которое многие судя по всему и не читали.
"Утверждение инвариантно и поэтому всегда имеет физический смысл и в том случае, если оно верно в произвольной системе координат. Примером тому служат эйнштейновские уравнения энергии-импульса, имеющие дивергентный характер. Хотя эйнштейновская энергия не обладает свойствами инвариантности , а выведенные им дифференицальные уравнения для ее компонент не образуют ковариантной системы , содержащиеся в этих уравнениях утверждения , которые должны выполняться в произвольной системе координат, удовлетворяют требованию инвариантности и поэтому имеют физический смысл."
Но в целом я поддерживаю Вашу критику псевдотензорного напрвления, а некоторым участникам неполохо было бы перечитать основоположника ОТО.