В одномерном кубе у вершины 1 связь, в двумерном-2, в трехмерном 3....
У нас есть 3 двоичных женщины и одна двоичная истинность.
В четырехмерной декартовой системе координат 3 оси назовем именами женщин, а четвертую истинностью. Отложим по каждой из осей от нуля -1 и +1. Спроецируем четырехмерный куб на этих отрезках со стороной 2. Его объем 2^4. Каждый единичный объем этого куба будет иметь уникальную сигнатуру и уникальное состояние и будет выражаться четырехразрядным двоичным числом. Отобразим 16 единичных объемов этого куба на 16 вершин четырехмерного куба со стороной 1. Каждой его вершине присвоим сигнатуру соответствующего единичного объема четырехмерного куба со стороной 2.
Если бы каждую вершину этого куба можно было связать с каждой, то мы получили бы
связей, каждой связи можно было бы присвоить восьмиразрядное двузначное число, состоящее из четырехразрядных двоичных названий вершин. Сами эти связи можно было бы представить в виде вершин восьмимерного куба со стороной 1 и казалось бы их должно быть 256, но это не так, поскольку не каждая вершина в четырехмерном кубе связана с каждой. С одной вершиной связано 3 из 16, а это значит, что типов связей может быть гораздо меньше чем вершин восьмимерного единичного куба.
tolstopuzЧто такое у Вас 256? Как оно получилось из понятного числа 16?
(Рассматриваем случай 3 жены)
Не ошиблись ли Вы?
Какова Ваша логика вывода 256 уникальных утверждения?