Natalya,
У Вас 

 и 

 (или  

) вообще-то разные. Одна величина зависит от 

, другая от 

.
Затем, где у Вас проверка, что Ваши дискриминанты - положительные? Это всё о появлении комплексных корней
С ума сойти. Проверила.  Они отрицательные. Это что же получается, на основании того что дискриминант отрицательный, Ферма пришёл к противоречию: нет такой точки 

 между 

 и 

? И на этом основании сделал вывод, Ведь в то время не рассматривали комплексные числа? И как это мне раньше не пришло в голову проверить дискриминант...
Он предположил, что такое решение существует,
 при 

, 

,         

,  где 

, 

, 

 - целые положительные взаимно простые числа и 

, то есть 

.
1.1. 

, где 

 - целое положительное число       

, где 

-  целое положительное число.
1.2. 

,   

 Перемножаем левые и правые  части,  получаем: 

, 
 
 1.3. 

, 

 (п.1.1). Перемножаем левые и правые части, получаем:

 , следовательно, 

 . 
2.1.1 функция 

 в точках 

 и 

 принимает одинаковые значения разных знаков и она является целой рациональной функцией, непрерывна и определена  при всех значениях 

, следовательно,  между 

 и 

 существует точка ( назовем ее  

, значение функции в которой равно  

.
2.1.3 Найдем все точки, значение функции в которых равно нулю.

. 

 или


, отсюда  

 или  

.
Поскольку 

, 

, 

.
3.1.1 поскольку 
функция 

 является целой рациональной функцией, непрерывна и определена  при всех значениях 

 и ее значение равно нулю в точках 0, h и с,
существует три точки,  в которых она принимает одинаковые отрицательные значения (

,

   и 

) и три , в которых она принимает одинаковые положительные значения (

, 

 и 

).
А дальше, решив квадратные уравнения, получил отрицательный дискриминант и пришёл к противоречию. Пришёл к невозможности существования точки 
