что за него придётся слишком дорого заплатить?
Вы переоцениваете сложность категорий. Основы можно изложить всего в нескольких абзацах.
Рассмотрим ориентированный мультиграф - мультиграф это почти как обычный граф, только между двумя вершинами может быть сколь угодно много стрелок, а не только нуль или одна, как в обычном графе. Путем из начальной вершины в конечную будем называть последовательность стрелок такую, что конец очередной стрелки - начало последующей. Примем, что для каждого пути из первой вершины во вторую существует - определена, указана, - одна стрелка оттуда туда же, называемая композицией этого пути. Также примем, что в каждой вершине висит петелька, называемая тождественной стрелкой. Потребуем выполнения двух аксиом:
1. композиция всего пути не изменится, если любой подпуть заменить композицией
2. если выкинуть из пути тождественную стрелку, то композиция пути не изменится
Такой мультиграф называется категорией.
Если в качестве вершин взять всевозможные множества, в качестве стрелок - отображения множеств, то получится категория Set всех множеств. Если в качестве вершин взять всевозможные группы, в качестве стрелок - гомоморфизмы групп, то получится категория Grp всех групп. Аналогично определяются категории колец, алгебр, векторных пространств (стрелки - линейные отображения) и т.п. Не обязательно рассматривать все множества - если взять три множества и рассмотреть пять-шесть функций между ними, то это тоже получится категория, причем вполне обозримая, её можно будет даже зарисовать на бумажке.
По-другому вершины называются объекты, стрелки называются морфизмы.
Подобно тому как между группами есть гомоморфизмы, между категориями есть функторы. Функтор - это отображение первой категории во вторую, которое объекты переводит в объекты, стрелки - в стрелки, сохраняет концы стрелок и сохраняет тождественные морфизмы. А ещё функтор перестановочен с операцией композиции - если взять путь и применить функтор к композиции этого пути, то получится в точности та же самая стрелка, которая получится, если применить функтор к каждой стрелке пути по отдельности и взять композицию уже потом.
Так же быстро определяются естественные преобразования, всевозможные -измы, конусы, пределы, монады и топосы.
нужен пример того, как в терминах теории категорий формулируется нечто физическое.
Самый известный пример, как мне кажется, - категории Фукая. Не знаю, насколько они просты, но, вроде бы как, вполне физичны. С теорией бран они точно связаны.
группы
Кстати, здесь возникает довольно наглядный пример обогащения языка.
Группой называется категория с одним объектом, в которой каждая стрелка - изоморфизм.
С обычной группой это связано так: элементы этой категории образуют группу относительно операции композции, тождественный элемент будет единицей этой группы.
Функторы из группы в Set - это в точности действия группы.
Функторы из группы в Vect - это в точности линейные представления группы.
Функторы из группы в произвольную категорию будут "действиями" этой группы на произвольной категории. Эти действия интересно исследовать, поскольку на них переносится вся интуиция, связанная с действиями и представлениями.
И ведь такая красота есть не только для групп. Например, примем, что у нас есть категория с одним объектом. Она называется кольцом, если на множестве её стрелок введена операция "плюсик", относительно которой стрелки образуют абелеву группу, и вдобавок относительно которой композиция стрелок дистрибутивна. Такая категория называется кольцом.
Так вот, модулями над этим кольцом будут в точности функторы в категорию абелевых групп. Но интуицию, связанную с модулями, можно перенести и на функторы в другие категории.
это более-менее невозможно без какого-либо ущемления категорий
Вроде бы для этого достаточно одного большого кардинала. Не уверен. Про это где-то написал Ловер, а где - я забыл.
Как определить множества только в терминах теории категорий и пользуясь только её аксиоматикой.
Маклейн предложил формальный язык, содержащий логику первого порядка и несколько нелогических аксиом; аксиомы множеств в этот язык не входят. Этот язык называется "метакатегория". На этом языке (и его диалектах) можно дать чистое определение множеств, чистое определение групп и даже чистое определение категорий. Самые известные результаты здесь принадлежат Ловеру. Он предложил диалект метакатегории под названием ETAC (элементарную теорию абстрактной категории) и с его помощью сделал ETCC и ETCS - соответственно элементарную теорию категории всех категорий и элементарную теорию категории всех множеств, то есть метаязык для категорий и метаязык множеств, в которых не встречается слово "множество" и тем более "класс".
ETCS слабее ZFC. Самое заметное отличие в том, что Ловер недолюбливает аксиому подстановки и утверждает, что с её помощью можно строить "эзотерические" сущности. Вслед за Ловером эту аксиому не любит и его научная школа. Однако во-первых, все недостающие аксиомы ZFC можно добавить к ETCS, во-вторых, чистая ETCS предоставляет уже довольно-таки большой запас множеств - по меньшей мере вплоть до алеф-омеги.
Проблема здесь не в том, чтобы получить хоть какое-то определение множеств на категорном языке. Таких определений много - берем элементарный топос и добавляем к нему столько аксиом, сколько нам угодно. Проблема в том, что не получается среди большого вороха возможных топосов выбрать какой-нибудь один и назначить его естественной, самой каноничной теорией множеств. Внезапно оказывается, что у топоса, являющегося ZFC, нет никаких преимуществ по сравнению с другими топосами. Он даже не самый красивый. Повторяется та же ситуация, которая была с геометриями: есть целая россыпь геометрий на любой вкус, и выбрать из них какую-нибудь одну "правильную" - сложно.
К слову, дело не ограничивается множествами. Можно чистым языком теории категорий определить категорию всех групп, тогда понятие "группа" можно будет определить как "объект категории групп". И так для любой известной структуры. Но это не слишком интересно.
Можно ли определить
действительно строго средствами теории категорий
Да, можно. Только определяются не натуральные числа, но сразу множество всех натуральных чисел: даются требования к объекту, являющиеся категорной переформулировкой аксиом Пеано. Тогда этот объект оказывается множеством натуральных чисел. Интересно, что такие объекты возникают во многих разных категориях, что даёт нетривиальные примеры множеств со структурой Пеано.