2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14, 15 ... 21  След.
 
 Re: Распределение заряда на иголке.
Сообщение04.03.2015, 02:49 
Аватара пользователя


08/12/08
400
amon в сообщении #985353 писал(а):
... Функция как функция... График нарисовать можно.
Ага, трёхмерный, хорошая мысль. Ну, представьте, дельта-функция в одной точке подпрыгивает с нуля в $+\infty$, а эта ж, зараза, с $-\infty$ в $+\infty$...
amon в сообщении #985353 писал(а):
С определением спорить бессмысленно - оно в справочнике написано.
Вот и гляньте, хотя бы, википедию (п. 1.1. Простое определение). Там ясно написано, что Ваше определение - следствие.
amon в сообщении #985353 писал(а):
Однако, Ваш результат...
amon, не я первый в этой теме упомянул про $\int\frac{\delta(y)}{(x-y)|x-y|}dy$. Я только сказал, что результат может быть таким или другим. А Вы утверждаете, что он только такой. Поэтому лучше сказать, что это Ваш результат.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение04.03.2015, 15:21 
Заслуженный участник
Аватара пользователя


30/01/06
72407
drug39 в сообщении #985352 писал(а):
Но отрезок интегрирования $[-1, 1]$ содержит $x=0$.

:facepalm:
Интегрирование происходит по $y,$ где там можно увидеть $x=0$?

Насчёт определения $\delta$ amon прав, вам остро надо почитать теорию. Хёрмандер или Рихтмайер, например. (Там обобщённые функции называются, в соответствии с англоязычной традицией, распределениями - distributions.)

-- 04.03.2015 15:25:25 --

drug39 в сообщении #985371 писал(а):
Ага, трёхмерный, хорошая мысль. Ну, представьте, дельта-функция в одной точке подпрыгивает с нуля в $+\infty$

Это образно, так про дельта-функцию рассказывают инженерам, которым тонкости знать не надо. На самом деле, дельта-функция - вообще не функция, и поэтому ни черта не "подпрыгивает" - она этого просто не умеет.

drug39 в сообщении #985371 писал(а):
Вот и гляньте, хотя бы, википедию

Хорошо, что на забор не сослались, но это примерно одно и то же. Википедия как источник определений не котируется. Можете открыть Математическую Энциклопедию, если не верите учебникам (парочку я привёл, остальные спр. в разделе форума "Математика" - там вас функаном завалят по уши).

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение04.03.2015, 15:50 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
drug39, ну что Вам сказать. В самом начале у меня было такое обращение:
amon в сообщении #980033 писал(а):
Хотелось бы узнать мнение знающих и опытных, если таковые этой ерундой заинтересуются.
IMHO, Вы под эту категорию, увы, не подходите (естественно, я могу ошибаться, но пока все к тому). Хотелось бы обсуждать задачку, которая, на мой взгляд, интересна тем, что, с одной стороны, нобеля за нее не дадут, поэтому можно обсуждать открыто, а с другой - это некий challange, поскольку эту задачку пытался решить чуть ли не Джеймс Клерк Максвелл, и с тех пор ни чего особо не сдвинулось. Вместо этого, приходится дискутировать с Вами об определении дельта-функции и прочей ерунде, написанной в справочниках (Вы, вместо википупии, Корна, хотя бы, откройте) и обсуждать уравнение, которое, скорее всего, в этой задаче, ветвь боковая и тупиковая. Посему у меня к Вам просьба. Если Вы хотите продолжить свою линию, откройте пожалуйста свою тему. От себя могу обещать в ней участвовать (или не участвовать - как скажите). Тем более, что удачный пример открытия параллельных тем на днях был (про гидродинамику ручьев), и там в параллельной, IMHO, продвинулись дальше, чем в основной.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение05.03.2015, 10:32 
Заслуженный участник


22/11/10
1184
Похоже, что распределение зарядов таки стремится к равномерному (без дельта-функций). Хотя на краю логарифмическая "особенность". Нестрогие рассуждения такие.
Пусть даны отрезок $[0,1]$ и $n+1$ зарядов. Обозначим заряд в точке $x = j/n$ через $q_j$. Я уже показывал, что удобно перейти к разностям $d_j = q_j - q_{j-1}$. Относительно них мы имеем
$$-S_{k+1}q_0 + q_n S_{n-k+1} = \sum \limits_{j =1}^{k} S_j d_{k+1-j} + \sum \limits_{j =1}^{n-k} S_j d_{k+j}\qquad (*)$$
При этом $S_k \sim \frac 1k$. Кроме того, из соображений симметрии $d_k = -d_{n+1-k}$.
Пусть на отрезок кинули $2m$ точек ($n+1 = 2m$). Наша цель - найти/оценить разность $q_0 - q_{m-1}$. Проще говоря, разность величин зарядов в центре и на краю. Для этого надо найти $\sum d_k$. Из интуитивных соображений и численных экспериментов следует, что величины $d_k$ быстро выходят на 0. Будем предполагать, что это имеет место.
Суммируем все уравнения $(*)$ для $k=\overline{1,m-1}$. В результате получим
$$-q_0(\ln m + C_0 + o(1)) = \sum \limits_{k=1}^{m-1} (\ln m + C_k + o(1))d_k$$
Приведем подобные и поделим на $\ln m$. В силу сделанных предположений, можно считать, что
$$q_{m-1} = q_0\frac{A+o(1)}{\ln m}$$
Учитывая быстрый выход $q_k$ на константу, отсюда следует, что на каждом интервале заряд стремится к равномерному распределению. Что, разумеется, неудивительно. На концах - логарифмическая "особенность". Но дельта-функции не образуются.
У меня есть и более точные гипотезы, но, к сожалению, совсем нет времени. Надо бы погонять численные эксперименты и все это проверить.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение05.03.2015, 16:56 
Аватара пользователя


08/12/08
400
Munin в сообщении #985537 писал(а):
:facepalm:
Интегрирование происходит по $y,$ где там можно увидеть $x=0$?
Ну, ошибся, можно было догадаться. Отрезок интегрирования содержит $y=0$, а при этом нельзя "зафиксировать" $x=0$.
Munin в сообщении #985537 писал(а):
На самом деле, дельта-функция - вообще не функция...
Я в курсе. Munin, давайте конструктивно. Я согласен на счет определения. Есть тонкости и есть разные определения. Но из каких определений Вам известна функция $f(x)=\int\limits_{-1}^{1}\frac{\delta(y)}{(x-y)|x-y|}dy$ ? По определению дельта-функции, например, из мат. энциклопедии этот интеграл не определён, поскольку требуется непрерывность умножаемой функции.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение06.03.2015, 20:01 
Заслуженный участник
Аватара пользователя


30/01/06
72407
drug39 в сообщении #986037 писал(а):
Ну, ошибся, можно было догадаться. Отрезок интегрирования содержит $y=0$, а при этом нельзя "зафиксировать" $x=0$.

Фиксирование $x$ происходит ещё до интегрирования. На плоскости $(x,y)$ вы задаёте подынтегральную функцию, потом прямую $x=\mathrm{const},$ потом получившееся сужение функции, зависящее только от $y,$ интегрируете по интервалу $y\in[-1,1]$ - с этим шагом не будет никаких проблем, кроме случая $x=0.$

Впрочем, это "на пальцах". При аккуратном рассмотрении мы запнёмся ещё в тот момент, когда увидим, что под интегралом - обобщённая функция, а её надо задать на плоскости двух переменных. Говорить о том, где она "хорошая" и "плохая", сужать её на одномерные линии - занятие не для средних умов (как мой), так что оставлю это более крутым профессионалам.

Вместо этого, я рассмотрю интеграл иначе: $\int\delta(y)\,F_x(y)\,dy.$ То есть, отложу обобщённо-функциональные рассуждения на потом. На плоскости $(x,y)$ зададим только обычно-функциональную часть подынтегрального выражения $F_x(y).$ И теперь смотрим, где она задана? Везде кроме прямой $x=y,$ очевидно. Фиксируем $x.$ Теперь вспоминаем, что такое дельта-функция. Это функционал, позволяющий вычислить $\int\delta(y)\,F(y)\,dy$ для $F(y)$ из некоторых классов функций, заданных на $[-1,1].$ Из каких? Вот тут и порылась собака. Geen, ссылаясь на Википедию, говорит о непрерывных функциях ($C^0[-1,1]$). Но можно взять и более широкое пространство, если на нём можно определить действие $\delta(y)$ хотя бы некоторых функциях, как предел значений на "хороших" (вспомним, что функционал не обязан быть определён на всём пространстве). В частности, можно взять функции, непрерывные почти всюду и интегрируемые в смысле главного значения (не знаю, есть ли для них соответствующее обозначение). Наша (ваша) $F_x(y)$ относится к этому классу, и действие $\delta(y)$ на неё может быть определено почти всегда, кроме только случая $x=0.$

Кажется, так. Приношу извенения всем математически более грамотным присутствующим за любую лажу.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение06.03.2015, 20:13 
Заслуженный участник


02/08/11
7013
Munin в сообщении #986609 писал(а):
непрерывные почти всюду и интегрируемые в смысле главного значения (не знаю, есть ли для них соответствующее обозначение)
Кажется, именно это и называется "интегрируемость по Коши".

-- 06.03.2015, 21:14 --

А обсуждаемый интеграл вроде можно и как свёртку двух обобщённых функций рассмотреть.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение06.03.2015, 20:39 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
warlock66613 в сообщении #986616 писал(а):
А обсуждаемый интеграл вроде можно и как свёртку двух обобщённых функций рассмотреть.


Поподробнее: каких? Только если Вы скажете, что $1/|x|x$ это обобщенная функция, Вам придётся определить её действие на основные. Да, конечно, можно её регуляризовать до второй производной $x|x|^{-1}\ln |x|$, но это явно не то, что надо (уже писал об этом)

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение06.03.2015, 23:27 
Аватара пользователя


08/12/08
400
Можно рассуждать так.
$\left\lvert f(x)\right\rangle=\hat N(x,y)\left\lvert g(y)\right\rangle$, где $\hat N(x,y)$ - такой оператор, что $f(x)=\int\limits_{-1}^{1}\frac{g(y)}{(x-y)|x-y|}dy$.
Оператор дейсвует на отрезке $y\in[-1,1]$ на всю функцию $g(y)$ целиком. Результат дейсвия оператора - функция $f(x)$ на всём отрезке $x\in[-1,1]$. Поэтому с учётом того, что сказал Munin, следует, что вся функция $\left\lvert f(x)\right\rangle$ не определена, если $\left\lvert g(y)\right\rangle=\left\lvert\delta(y)\right\rangle.$
Поэтому я и сказал, что для того, чтобы функция $f(x)$ была определена, нужны специальные оговорки. А результат $\int\limits_{-1}^{1}\frac{\delta(y)}{(x-y)|x-y|}dy=\frac 1 {x|x|}$ напрямую следует из физических соображений, т.е. из закона Кулона. К тому же, у меня в равенстве $$\rho(y)=C_0+C_1\delta_{-}(y+1)+C_2\delta_{+}(y-1)$$ функции $\delta_{-}$ и $\delta_{+}$ понимаются как обычные функции, которые лишь стремятся к дельта-функциям.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение07.03.2015, 00:25 
Заслуженный участник
Аватара пользователя


30/01/06
72407
drug39 в сообщении #986735 писал(а):
Поэтому с учётом того, что сказал Munin, следует, что вся функция $\left\lvert f(x)\right\rangle$ не определена, если $\left\lvert g(y)\right\rangle=\left\lvert\delta(y)\right\rangle.$

По банальной причине, с которой вы, вроде, уже согласились: дельта - это не функция вообще. От слова "никак".

И оператор стоит перед ней в немом изумлении, и пытается поднять челюсть.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение08.03.2015, 14:23 


31/07/14
721
Я понял, но не врубился.

(Распределение заряда на эллипсоиде...)

Пользуясь затишьем, предложу для коллекции ещё один (тупиковый) подход. Навеян фактом равномерного распределения заряда на эллипсоиде. Какое этому можно найти физическое объяснение? Видимо дело в том, что кольца отталкиваются слабее, чем точки, и тем слабее, чем больше их радиус. Это интуитивно ясно, но для подтверждения можно отсюда Off-axis electric field of a ring of charge http://student.ndhu.edu.tw/~d9914102/Te ... 0Paper.pdf вылущить асимптотическую формулу для осевой проекции ${E}$ в точках, близких к кольцу (расстояние от точки до кольца $h$ намного меньше его радиуса $a$, (точка "над кольцом" на расстоянии радиуса от оси)): $E_z \sim \frac{Q}{h\cdot a} $ T.e. равномерность распределения заряда на эллипсоиде "оплачивается" неравномерностью закона взаимодействия (колец) по его длине. Если же форма эллипсоида будет при стягивании сломана и преобразована в 1D, то эта неравномерность должна, для сохранения равновесия зарядов, перейти как бы на распределение заряда.
Если так, то дальше по плану: 1. Найти интегрированием по длине эллипсоида условие равновесия в $x$. Тем самым определится функция $\mathcal{E} (x-y)$ (это $\int\limits_{-1}^{1}\frac{\rho_0}{\mathcal{E} (x-y)}dy=0$). 2. И если $\mathcal{E} (x-y)$ разлагаема на множители: $\mathcal{E} (x-y)={(x-y)\cdot|x-y|}\cdot{\rho(y)^{-1}}$, то и имели бы $\rho(y)$.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение08.03.2015, 16:48 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
chislo_avogadro в сообщении #987396 писал(а):
1. Найти интегрированием по длине эллипсоида условие равновесия в $x$.

Это место поясните пожалуйста, а то праздник на дворе, соображается тяжело ...

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение08.03.2015, 20:23 


31/07/14
721
Я понял, но не врубился.
Я предполагал так - вычисляется сила (интегрирование по кольцам), действующая на пробный заряд в $x$ слева, и она же справа. Они должны быть равны. Как я понимаю, у вас тут ведь для иглы то же самое написано -
amon в сообщении #980164 писал(а):
$$VP\int\limits_{-1}^{1}\frac{\rho(y)}{(x-y)|x-y|}dy=0$$

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение08.03.2015, 22:54 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
chislo_avogadro в сообщении #987509 писал(а):
Я предполагал так - вычисляется сила (интегрирование по кольцам)

Понял. Над этим можно подумать. Сразу я изъяна не вижу, как, впрочем, и ответа.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение10.03.2015, 20:33 
Заслуженный участник


02/08/11
7013
Red_Herring в сообщении #986638 писал(а):
Поподробнее: каких?
Ничего не могу добавить к сказанному вами далее.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 308 ]  На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14, 15 ... 21  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group