2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8  След.
 
 Re: Странные мысли о размерностях физических величин
Сообщение11.12.2014, 22:00 


06/12/14

154

(Оффтоп)

Понимаю, профессиональная солидарность, но все же справедливость должна быть выше солидарности.

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение11.12.2014, 22:55 
Заслуженный участник
Аватара пользователя


27/04/09
23404
Уфа

(Оффтоп)

Какая солидарность? Морозите глупости вы, и приписываете мне того, чего я не имел в виду, тоже вы. Это всякому, мало-мальски понимающему употребление русского языка, будет ясно. Игнор заработали, действительно.

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение11.12.2014, 23:02 


06/12/14

154

(arseniiv)

Спасибо, надеюсь игнор будет полным.

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение13.12.2014, 03:06 
Заслуженный участник
Аватара пользователя


30/01/06
65626
provincialka в сообщении #943846 писал(а):
Попутно недоумение по поводу умножения/деления величин. Любой ли комбинации можно придать смысл? Например, $\text{руб}^2$ - что это такое?

Тут тоже не надо ставить телегу впереди лошади. Не смысл подбирается под комбинацию, а комбинация под смысл. Допустим, какая-нибудь секунда в 17-й степени - тоже не имеет никакого смысла, потому что никому не нужна оказалась до сих пор. Но бывает и так, что у одной и той же комбинации возникает несколько смыслов. Этот случай очень важен, его надо рассмотреть подробнее.

а) Бывает так, что у одной комбинации есть несколько смыслов, которые тем не менее не следует путать. Например, размерности работы и момента силы совпадают ($\text{Н}\cdot\text{м}$). Но это вещи совсем разные, никогда друг в друга не "превращаются", и если случайно одно подставят вместо другого - будет ошибка. Именно от ошибок такого рода призвана защищать система размерностей. Но в данном случае не защищает. (Ещё пример: если угловые градусы или проценты будут использованы вместо радианов или какой-то другой безразмерной величины.) Здесь возникает желание "доработать" систему размерностей, чтобы она от таких ошибок защищала. Иногда это возможно, хотя будет, разумеется, нестандартным.

б) Бывает так, что у одной комбинации есть несколько смыслов, которые не следует путать на элементарном уровне. Но при более глубоком рассмотрении, они оказываются между собой связаны, и в частности, могут входить в одни и те же формулы. Школьные примеры: работа и энергия, напряжение и потенциал. Нешкольный пример: давление ($\text{сила}/\text{площадь}$) и плотность энергии ($\text{энергия}/\text{объём}$). Оказывается, что если взять некий объём вещества, то давление на его поверхности будет взаимосвязано с энергией внутри этого объёма. Не обязательно равны! Даже чаще всего не равны. Но взаимосвязаны, например, линейно пропорциональны с безразмерным коэффициентом. Изучением этой взаимосвязи занимается теоретическая физика. И ещё пример, совсем для удовольствия: гравитационный потенциал ($(\text{ускорение свободного падения})\cdot\text{расстояние}$) имеет ту же размерность, что квадрат скорости. Оказывается, что гравитационный потенциал во столько же раз меньше величины $c^2$ (квадрата скорости света), во сколько раз замедление времени в этом потенциале меньше самого прошедшего времени ($\Delta t/t,$ безразмерная величина).

Такие случаи - сложные для интерпретации. На элементарном уровне - система размерностей должна бы защищать от простейшей путаницы. Но на более глубоком - не должна запрещать находить подобную взаимосвязь. Например, величины электрического и магнитного поля $E,D,B,H$ в системе СИ все имеют различные размерности, а в системе СГС - все одинаковые. Это более глубоко и удобно для теоретиков.

И, пожалуй,
в) Бывает так, что у одной комбинации есть несколько смыслов, которые на самом деле между собой связаны, но современная наука этого ещё пока не обнаружила. Скажем, электрический заряд и цветовой заряд кварков (и тот и другой безразмерны, либо имеют каждый свою отдельную размерность).

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение13.12.2014, 03:25 
Заслуженный участник
Аватара пользователя


08/11/11
5135
Munin в сообщении #945282 писал(а):
Но это вещи совсем разные, никогда друг в друга не "превращаются", и если случайно одно подставят вместо другого - будет ошибка.


Не такие уж и разные. Момент силы — это работа на один оборот (с точностью до $2\pi$).

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение13.12.2014, 03:41 
Заслуженный участник
Аватара пользователя


30/01/06
65626
warlock66613 в сообщении #944069 писал(а):
Можно сделать радиан размерным, введя новую фундаментальную константу $o_b = 2 \pi\text{ рад}$. Её абсолютное безразмерное значение есть просто $2 \pi$.

Это, конечно, верно. Но в обратную сторону с метром - вы махнули. Если не принимать в расчёт планковские единицы (которые пока не работают ни в одной подтверждённой теории), метр пока размерен. Его размерность - обратная масса (в $c=\hbar=1$) или просто масса (в $c=G=1$).

warlock66613 в сообщении #944069 писал(а):
Кажется разумным начать со следующей интерпретации. Истинные законы природы все безразмерны.

Это тоже смело (как я сказал выше). Предлагаю начать с другого: все законы природы, известные на сегодняшний день, работают на многообразиях, не менее чем гладких. А значит, для них есть касательные векторные пространства, а в векторном пространстве можно взять один вектор за базис одномерного подпространства, и все остальные выразить через него. Вот вам и идеология эталона и сравнения с эталоном. Всё остальное - введение дополнительных структур, снова гладких, и поэтому снова - имеющих некоторый размерный смысл (например, $x=y^3$ переходит в себя при масштабировании $x$ в третьей степени по сравнению с $y$).

warlock66613 в сообщении #944069 писал(а):
Почему смотрится странно и обычно указывает на ошибку появление в формуле (например) тригонометрической функции от размерной величины? Здесь тоже ответ, явно, должен быть связан с теорией размерностей, но его конкретное содержание для меня пока туманно.

Здесь я видел ответ очень простой, но не знаю, насколько он вас удовлетворит.
$\sin x\stackrel{\mathrm{def}}{=}x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\ldots$
где коэффициенты зафиксированы определением и безразмерны. Значит, подстановка размерной величины сразу "ломает" всю формулу.

amon в сообщении #944096 писал(а):
Вы охаянного Munin'ым Сену все-таки почитайте.

Не надо, пожалуйста. Я его не охаивал. Просто не тот уровень. А вы почитайте Манина, для сравнения.

warlock66613 в сообщении #944104 писал(а):
Ну и конечно, будет красиво в конце концов переформулировать всё без использования ненаблюдаемых абсолютных значений констант - но, как известно, калибровки и фоновые метрики далеко не всегда легко исключаются явным образом.

А вот это интересная мысль. http://en.wikipedia.org/wiki/Conformal_anomaly

g______d в сообщении #944105 писал(а):
Ни в один физический закон не входит температура по Цельсию.

"Тройная точка воды имеет $t=0{,}01^\circ\,\mathrm{C}.$" :-)

(Оффтоп)

Prikol в сообщении #944075 писал(а):
Если бы это было так, то имели бы право на существование увеличеные и уменьшеные, скажем раза в три или в пять с полтиной, копии привычных нам частиц, молекул и т.д. И тогда их можно было бы иногда наблюдать в ускорителях после столкновений обычных частиц. Ан нет! :mrgreen:

http://en.wikipedia.org/wiki/Unparticle_physics


warlock66613 в сообщении #944109 писал(а):
Посмотрите у меня - размерная величина всё-таки является действительным числом.

Строго говоря, не известно никаких причин, почему бы "размерные величины, выраженные в естественных единицах как безразмерные", не могли бы быть подставлены в какие-нибудь функции типа тригонометрических. Более того, в какой-нибудь гидродинамике такое сплошь и рядом происходит. Правда, там не красивые функции типа тригонометрических, а что-то типа $ax+bx^2+\ldots,$ где $a,b...$ безразмерные феноменологические константы, а $x$ - какое-нибудь число типа Маха или Рейнольдса.

g______d в сообщении #944169 писал(а):
Как насчет постоянной тонкой структуры?

Размерная же: $\alpha=e^2$ :-) (Физики прикол поймут... математики могут повестись...)

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение13.12.2014, 03:45 
Заслуженный участник
Аватара пользователя


08/11/11
5135
Munin в сообщении #945288 писал(а):
Размерная же: $\alpha=e^2$ :-) (Физики прикол поймут... математики могут повестись...)


В планковской системе, что ли? Так в ней и заряд безразмерный )

-- Пт, 12 дек 2014 17:47:22 --

Munin в сообщении #945288 писал(а):
"Тройная точка воды имеет $t=0{,}01^\circ\,\mathrm{C}.$" :-)


Это не закон, а определение $^\circ\,\mathrm{C}.$ В закон должны входить величины, определенные ранее (Кэп).

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение13.12.2014, 03:53 
Заслуженный участник
Аватара пользователя


04/09/14
3353
ФТИ им. Иоффе СПб
Munin в сообщении #945288 писал(а):
Не надо, пожалуйста. Я его не охаивал.

Извините, это у меня юмор такой...

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение13.12.2014, 07:13 
Заслуженный участник
Аватара пользователя


30/01/06
65626
g______d в сообщении #945289 писал(а):
В планковской системе, что ли?

Нет, в обычной декартовой... тьфу, в обычной $c=\hbar=1.$

g______d в сообщении #945289 писал(а):
Так в ней и заряд безразмерный )

Good point, но подколка всё ещё не в этом. И заряд можно считать всё-таки размерным: он сохраняется.

g______d в сообщении #945289 писал(а):
Это не закон, а определение $^\circ\,\mathrm{C}.$

Нет, определение у него через кипение и замерзание воды при давлении 1 атмосфера :-)

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение13.12.2014, 21:10 
Заслуженный участник


29/09/14
893
Munin в сообщении #945282 писал(а):
Бывает так, что у одной комбинации есть несколько смыслов, которые тем не менее не следует путать.

Ещё неплохой пример: размерность электрического сопротивления совпадает с размерностью обратной скорости в механике ($30\, \text{Ом\,=1/c}$ , приблизительно есс-но).

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение13.12.2014, 23:18 
Аватара пользователя


25/06/14
686
Miami FL
warlock66613 в сообщении #944102 писал(а):
Моё утверждение о безразмерности носит совершенно другой характер. Прежде всего следует заметить, что оно принципиально неопровержимо.

Тогда по Попперу ваше утверждение есть догма, а не научное утверждение.

-- 14.12.2014, 00:24 --

warlock66613 в сообщении #944104 писал(а):
Prikol в сообщении #944075 писал(а):
Если бы это было так, то имели бы право на существование увеличеные и уменьшеные, скажем раза в три или в пять с полтиной, копии привычных нам частиц, молекул и т.д.
Ничего подобного. Представьте, что один из фундаментальных законов зучит так: "все молекулы имеют размер 2" - и всё, нет никаких уменьшенных копий.

В литературе неоднократно рассматривался такой вопрос. Что будет если вся Вселенная и все в ней, включая атомы и нас самих, разом уменьшится в несколько раз. Заметим ли мы такое уменьшение? Второй вопрос (из литературы) - Могут ли несколько копий мироздания с разными масштабами сосуществовать?

-- 14.12.2014, 00:35 --

g______d писал(а):
Ни в один физический закон не входит температура по Цельсию. Везде говорится о разности температур.

В теории фазового перехода плавление/замерзание воды именно температура по Цельсию входит в разложение по малому параметру - отклонение от критической точки.

g______d писал(а):
По той же причине, по которой не бывает синуса вектора.

А вот синус матрицы бывает. Правда, если матрица не квадратная, то уже не все так просто.

-- 14.12.2014, 00:38 --

warlock66613 в сообщении #944106 писал(а):
Синус действительного числа же определён замечательно.

Синус комплексного числа тоже определен.

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение14.12.2014, 00:54 
Заслуженный участник
Аватара пользователя


08/11/11
5135
Prikol в сообщении #945828 писал(а):
В теории фазового перехода плавление/замерзание воды именно температура по Цельсию входит в разложение по малому параметру - отклонение от критической точки.


Серьёзно? Я думал, туда входит разность $T-T_0$, где $T_0$ -- температура замерзания. Эта разность численно равна температуре по Цельсию при нормальных условиях, но вряд ли теорию фазовых переходов рассматривают только при атмосферном давлении.

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение14.12.2014, 00:56 
Заслуженный участник
Аватара пользователя


04/09/14
3353
ФТИ им. Иоффе СПб
Munin в сообщении #945288 писал(а):
А вы почитайте Манина, для сравнения.
Почитал Манина и Тао (по диагонали, может чего важное пропустил/непонял). Готов получить порцию тапок, но Сена мне больше нравится (может потому, что его не перечитывал). IMHO, если счистить математическую щелуху (в ней, возможно, содержится что-то важное и интерестное, но я этого не увидел), то почти ничего, кроме утверждения, что величины любой размерности можно перемножать, а одинаковой - складывать там не содержится. Идея, что то, что Сена называет определяющим уравнением, столь же важно для понятия размерности, как и сама единица, IMHO, напрочь отсутствует у Тао, и не перекрывает Сену у Манина.

Для иллюстрации, покажу (с помощью Сены), что по Тао число $\pi$ размерно. (Это и к маленькой дикуссии с g______d по поводу размерности $\frac{F}{ma}$). Итак определение из Тао:

Dimensionless objects {x}, which do not depend on the dimensional parameters {M,L,T}

Число $\pi$ я имею право определить как отношение площади круга к квадрату его радиуса. Тогда определяющее уравнение $\pi=\frac{S_c}{r^2}$. С подсказки Сены будем измерять площадь не в квадратных, а в круглых метрах, т.е единица площади это площадь круга единичного радиуса. В этой системе единиц $\pi=1$, значит, по Тао, $\pi$ - величина размерная (я ведь еще эллиптические метры не пробовал). Ловлю тапки.

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение14.12.2014, 01:19 
Заслуженный участник
Аватара пользователя


08/11/11
5135
amon в сообщении #945882 писал(а):
Число $\pi$ я имею право определить как отношение площади круга к квадрату его радиуса.


Только пока это не противоречит определению с отношением длин.

 Профиль  
                  
 
 Re: Странные мысли о размерностях физических величин
Сообщение14.12.2014, 01:22 
Заслуженный участник
Аватара пользователя


30/01/06
65626
amon в сообщении #945882 писал(а):
Почитал Манина и Тао (по диагонали, может чего важное пропустил/непонял)... IMHO, если счистить математическую щелуху (в ней, возможно, содержится что-то важное и интерестное, но я этого не увидел), то почти ничего, кроме утверждения, что величины любой размерности можно перемножать, а одинаковой - складывать там не содержится.

Ну, это утверждение нам и нравится в его математической шелухе :-) По сути, можно так и всю теорфизику в математическую шелуху записать, эка невидаль, взяли банальные законы Ньютона и поизвращались над ними.

amon в сообщении #945882 писал(а):
Идея, что то, что Сена называет определяющим уравнением, столь же важно для понятия размерности, как и сама единица, IMHO, напрочь отсутствует у Тао, и не перекрывает Сену у Манина.

Ну а вот эта идея мне показалась напрочь банальной. Да, можно, скажем, дефинировать Джоуль (назовём его Джоуль-штрих) не по уравнению $A=Fs,$ а по уравнению $E=mv^2,$ и тогда волшебно получится, что он вдвое меньше обычного Джоуля, при тех же базовых единицах $LMT$ МКС. Ну, это не чудо всё-таки.

amon в сообщении #945882 писал(а):
Для иллюстрации, покажу (с помощью Сены), что по Тао число $\pi$ размерно.

Да ладно, это каждый школьник знает: углы меряются в пях :-)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 115 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8  След.

Модераторы: Парджеттер, Pphantom, Aer, photon, profrotter, Eule_A, Jnrty, whiterussian, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: SABANEEV


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group