Честно сказать, я не понял, о какой ошибке идет речь в конце страницы 325. Если речь идет о формуле

то, по всей видимости, она верна, поскольку

. Запись, правда, какая-то двусмысленная. Ну действительно

Кроме того. Вся эта возня с преобразованием Фурье - это все чепуха "для отвода глаз". Стоило ли это все делать, если в конечном итоге появляется свертка с фундаментальным решением уравнения теплопроводности. Можно было сразу это сделать. На стр. 326 в соотношении (11) оно и вылезло. И вот здесь то и вопрос: а как автор ухитрился провести оценку? А вот как. Оказывается в лемме 1 есть такой пункт (3), который утверждает, что

.
Эта замечательная лемма так написана, что там слона можно спрятать. Ни черта не видно. Так вот это и есть ключевая оценка. Почему она верна? На этот счет имеется крайне невнятное пояснение сразу же за словом
Proof. Здесь автор сослался сам на себя. Но я в ту ссылку не заглядывал, поскольку и так ясно, что тут дыра. Ведь согласно этой оценке, если в какой-то точке скорость равнялась 0, то она такой и останется. На мой взгляд, до тех пор, пока автор не разъяснит этот момент, все дальнейшие выкладки особого значения не имеют.