Здесь из априорных соображений сразу ясно, какой должна быть условная вероятность (

), безо всяких ссылок на безусловную!
Ну вы просто построили один пример из тысячи. В определённой степени искуственный. «У нас есть функция

, для которой

и

. Найдите

.»
Нет, принципиально было в контексте дискуссии, является ли она новой (возникшей в 20 веке) математической теорией, или это просто "те же яйца, только вид сбоку".
А это отдельный вопрос, а не то, что вы спросили только что большими буквами на предыдущей странице. И возникли корни теорвера раньше, хотя и не были так строго оформлены. Можно, конечно, считать отдельно «наивный теорвер» и «формальный теорвер» отдельными, а можно не отдельными — это
нефизично не должно играть никакой роли для математика, и это ровно та же проблема, что и мнимая, индуцируемая геополитикой проблема «язык — диалект». Ответы на такие вопросы ничего не дают и потому интерес к ним кое-что говорит об интересующихся. Ну а если не отпускает, так надо засесть за теорию меры, теорию вероятностей, перечитать много всякого и сделать вывод, что вопрос всё-таки сам ушёл.