В теорвере есть такой замечательный объект:
неупорядоченная выборка с возвращением. Из мешка с
различными(пронумерованными) шарами вытаскиваются последовательно, один за одним
шаров - т.н. выборка по
шаров. "Выборка с возвращением" означает, что после каждого вытаскивания шар кладется обратно в мешок а в выборке остается его дубликат или просто бумажка с номером шара. "Неупорядоченная" означает, что у нас теряется информация о последовательности вытаскиваний, - какой шар за каким вытаскивался. Таким образом, при подсчете всех возможных
различных выборок, выборка где, например, шар "номер 2" был вытащен 5-ым, 6-ым и 9-ым и выборка, где шар "номер 2" был вытащен 4-ым, 7-ым и 12-ым считаются одинаковыми. Как известно, число таких различных выборок соответствует числу различных размещений
одинаковых частиц(бозонов) по
состояниям, т.е., статвесу.
Это хорошо известная вещь, но возможно еще более усилить, так сказать, неупорядоченность. Каждая выборка может быть представлена в виде
кучек бумажек с одинаковыми номерами. Допустим, мы перестали обращать внимание на номера, написанные на бумажках и теперь различными выборками будут только те, которые имеют различное число бумажек в кучках(это аналогично тому как различаются микросостояния неотличимых частиц в статистике БЭ). Получается какая-то новая фундаментальная статистика. Интересно, рассматривалалась где-либо подобная выборка и есть ли какие-нибудь ее применения?