2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9  След.
 
 Re: ошибки у Фихтенгольца
Сообщение13.06.2014, 21:29 
Заслуженный участник
Аватара пользователя


09/02/14

1377

(Оффтоп)

corvus42 в сообщении #875091 писал(а):
вроде бы я где-то слышал, что задача выражения интеграла в элементарных функциях (если он выражается) уже алгоритмически разрешена

Я слышал об этом отсюда. Впрочем, в комментариях же написано, в каких местах там излишне передёргнуто.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение13.06.2014, 22:02 


12/06/14
61
Сант-Петербург, Россия
Lia в сообщении #875041 писал(а):
<...>V_I_Sushkov<...> злоупотребление средствами форматирования (крупный шрифт).

Виноват, прошу извинить.
Я не специально нарушил (даже не знал про такое правило) -
- уж очень мне было поразительным увидеть, что человек,
который в каждом посте старается выставить меня невежей,
одновременно с этим уверяет весь мир,
будто функция вида $f (\overrightarrow{u},\overrightarrow{v})= \sum M_i_j u_i v_j$
якобы не является билинейной формой,
т.е. не линейно зависит от аргументов $\overrightarrow{u}$ и $\overrightarrow{v}$.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение13.06.2014, 23:16 


10/02/11
6786
ewert в сообщении #875060 писал(а):
Билинейная форма -- не есть тензор, она есть форма.

определение тензора в терминах полилинейных форм содержится в Marsden: Manifolds, Tensor Analysis,
and Applications.
ewert в сообщении #875060 писал(а):
Любая производная есть тензор, и вторая -- не исключение.

задача: сделать замену координат $x=x(y)$ и убедиться, что матрица вторых производных функции преобрапзуется не по тензорному закону.
Ваше невежество начинает зашкаливать

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение13.06.2014, 23:18 


12/06/14
61
Сант-Петербург, Россия
Munin в сообщении #875034 писал(а):
Симметризация - это одно действие, насколько я до сих пор знал, а превращение билинейной формы в квадратичную - другое.

Слово "симметризация" употребляется во многих смыслах.
Можно выделить симметричную часть билинейной формы. Это симметризация.
Можно выделить симметричную часть матрицы. И это симметризация.
То, что описываю я (симметризация плюс приравнивание аргументов друг к другу), тоже иногда называют симметризацией, потому что общепринятого названия для этой операции нет.
Ведь вот и Вы, например, употребили не ее название, а длинное описание "превращение билинейной формы в квадратичную".
Иногда, когда пишут про поляризацию, обратную ей процедуру называют симметризацией.
Я видел такое в книге давно. Но в какой - не помню.
Но, между нами говоря, я видел, что Вы поняли о чем речь и это главное.

Munin в сообщении #875034 писал(а):
И я не знаю, что за обозначения вы используете, не вводя, как сами собой разумеющиеся ($\overrightarrow{\delta x}$).

Да, это обозначение общепринято.
Это просто новое приращение аргумента, не зависимое от $\overrightarrow{\Delta x}$.
Тут как раз и рванула та мина, которую в Ваши привычки заложили Фихтенгольц со товарищи и против которой, в частности, я тут выступаю.
Это именно они создали у Вас впечатление, что букве $\Delta$ навечно присвоена роль разностного оператора и если аргумент обозначен $\overrightarrow{x}$,
то его приращение мы якобы обязаны обозначать $\overrightarrow{\Delta x}$ и никак иначе. - Не обязаны.
На самом деле буква $\Delta$ - просто первая в имени переменной, напоминающая о слове "разность". И это было удобно Лейбницу.
Если же у величины несколько независимых приращений, то мы вынуждены использовать для них другие имена.
Буква $\delta$ - тоже напоминает о слове "разность". Вот её и используют тоже.
Если же их (приращений) много, то вместо изменения первой буквы используют индексы.
Munin в сообщении #875034 писал(а):
V_I_Sushkov в сообщении #875019 писал(а):
Антисимметричная часть бесследно теряется.

Оказывается, она там была.

Не придирайтесь, пожалуйста. Я старался быть краток, потому пожертвовал точностью речи.
Я хотел подчеркнуть, что про необходимость равенства смешанных производных у нас обычно не пишут. Пишут про достаточность.
А необходимость именно тут и ясна.
Без нее было бы невозможно по симметричной части матрицы вторых производных восстановить ее первоначальный вид, т.е. сделать поляризацию.
Munin в сообщении #875034 писал(а):
V_I_Sushkov в сообщении #875019 писал(а):
Если мы захотим ее линеаризовать с целью получения следующего дифференциала

Странный рецепт.

А что еще остается думать студентам, которым объяснили, что третий дифференциал есть дифференциал от второго, а кроме того дифференцирование есть построение линейного приближения (линеаризация)?
Ведь про поляризацию с линеаризацией полилинейного отображения и последующей "симметризацией" им не говорят.

Munin в сообщении #875034 писал(а):
V_I_Sushkov в сообщении #875019 писал(а):
Наиболее ясное описание всего этого я видел в учебнике Колмогорова и Фомина.

С вашим рассказом оно не совпадает чуть более чем полностью.

Так ведь я же реализовал их описание на одном частном примере.
Да еще и терминологию употребил свойственную только ему.
Да, они вроде не пишут явно про причину, диктующую нам необходимость симметричности.
Но ведь её видно по последовательности операций.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение13.06.2014, 23:28 
Заслуженный участник
Аватара пользователя


30/01/06
72407
V_I_Sushkov в сообщении #875173 писал(а):
Тут как раз и рванула та мина, которую в Ваши привычки заложили Фихтенгольц со товарищи и против которой, в частности, я тут выступаю.
Это именно они создали у Вас впечатление, что букве $\Delta$ навечно присвоена роль разностного оператора

Вообще-то я даже не читал Фихтенгольца. Это соглашение общепринято в физике. Как бы вы там ни выступали.

V_I_Sushkov в сообщении #875173 писал(а):
его приращение мы якобы обязаны обозначать $\overrightarrow{\Delta x}$ и никак иначе. - Не обязаны.

Разумеется. Обязаны другое: объяснять вводимые обозначения. А этого вы не сделали.

V_I_Sushkov в сообщении #875173 писал(а):
Я хотел подчеркнуть, что про необходимость равенства смешанных производных у нас обычно не пишут. Пишут про достаточность.
А необходимость именно тут и ясна.

А то, что они по факту равны, "у вас" не пишут?

V_I_Sushkov в сообщении #875173 писал(а):
А что еще остается думать студентам

Я боюсь, студентам ни в коем случае не стоит учиться думать, как вы. Даже отсебятина лучше, чем неправильный рецепт.

V_I_Sushkov в сообщении #875173 писал(а):
Так ведь я же реализовал их описание на одном частном примере.

Вы меня уже не обманете. Я читал, что там написано. Ничего похожего, абсолютно.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение13.06.2014, 23:52 


12/06/14
61
Сант-Петербург, Россия
Munin в сообщении #875178 писал(а):
Вообще-то я даже не читал Фихтенгольца. Это соглашение общепринято в физике. Как бы вы там ни выступали.

А по какому учебнику Вы учили матанализ на первом - втором курсах?

Munin в сообщении #875178 писал(а):
Разумеется. Обязаны другое: объяснять вводимые обозначения. А этого вы не сделали.

Ну извините, я не знал что на форуме есть люди, не знакомые с этими обозначениями.
Да и в Правилах тут строго предписано не увлекаться изложением общеизвестных сведений.
Вот я и побоялся.

Munin в сообщении #875178 писал(а):
А то, что они по факту равны, "у вас" не пишут?

По факту? Это как?

Munin в сообщении #875178 писал(а):
Я боюсь, студентам ни в коем случае не стоит учиться думать, как вы. Даже отсебятина лучше, чем неправильный рецепт.

Не понимаю, что Вас так раздражает.

Munin в сообщении #875178 писал(а):
Вы меня уже не обманете. Я читал, что там написано. Ничего похожего, абсолютно.

Модератор запретил (или запретила) мне громко хохотать на форуме.
Потому скажу тихонько: хи-хи-хи-хи! :D
Munin, ну подумайте сами, зачем мне такая ужасная работа: кого-то обманывать?
Ведь лжец должен помнить свою ложь! (если он не отпетый)
Зачем мне мусор в голове и грязь в душе?
Или я похож на человека, страдающего комплексом неполноценности? :D

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение14.06.2014, 00:49 
Заслуженный участник
Аватара пользователя


30/01/06
72407
V_I_Sushkov в сообщении #875187 писал(а):
Или я похож на человека, страдающего комплексом неполноценности? :D

Вы знаете, да, похожи.

Ну посмотрим для начала: 16 сообщений на форуме, и все посвящены высказыванию "своего авторитетного мнения", часто уже со смехом над окружающими.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение14.06.2014, 00:55 
Админ форума
Аватара пользователя


19/03/10
8952
 !  Убедительная просьба прекратить выяснение отношений

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение14.06.2014, 05:41 


12/02/14
808
Munin в сообщении #875025 писал(а):

(Оффтоп)

Oleg Zubelevich в сообщении #874992 писал(а):
ловите

Спасибо!

Фолланд, я гляжу, начинается уже после Рудина. Драйвер даёт определение производной, но тоже похож на продвинутый текст.
Есть ещё книжка Анри Картана "Дифференциальное Исчисление и Дифференциалные Формы." Там про старшие производные всё ясно написано. У Фихтенгольца про дифференциалы действительно мутно, насколько я помню, с тех пор, как я его читал давным-давно. А ещё есть сравнительно современное понятие "струя функции," которая помогает лучше понять всю эту тематику.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение14.06.2014, 07:01 
Заслуженный участник


13/12/05
4645
Oleg Zubelevich
Oleg Zubelevich в сообщении #874901 писал(а):
Однако, старшим производным тоже можно придать инвариантный смысл и это хорошо известно, см. Колмогоров-Фомин ,например.

Что Вы понимаете под инвариантностью в данном случае (в определении старших производных в К.-Ф.) ? Инвариантность -- это сохранение чего-то при некоторых преобразованиях. Что сохраняется и при каких преобразованиях? Это определение ничуть не более инвариантно, чем $d^2f=\sum_{i,j=1}^n\frac{\partial^2 f}{\partial x^i\partial^x^j}dx^idx^j$ -- сохраняется только при линейных преобразованиях.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение14.06.2014, 11:02 
Заслуженный участник
Аватара пользователя


30/01/06
72407
mishafromusa в сообщении #875246 писал(а):
А ещё есть сравнительно современное понятие "струя функции," которая помогает лучше понять всю эту тематику.

А вот кстати, на эту тему есть тексты сравнительно простые, уровня, скажем, Зорича? Вопрос ко всем присутствующим, особенно Oleg Zubelevich, Padawan.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение14.06.2014, 11:16 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Про второй дифференциал было здесь.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение14.06.2014, 11:35 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Точнее, видимо, здесь. Большое спасибо!

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение14.06.2014, 11:46 


10/02/11
6786
Padawan в сообщении #875249 писал(а):
Что Вы понимаете под инвариантностью в данном случае (в определении старших производных в К.-Ф.) ?

у К-Ф отображение задается в бескоординатном виде. Элементу одного пространства поставлен в соответствие элемент другого пространства.
Padawan в сообщении #875249 писал(а):
Это определение ничуть не более инвариантно, чем $d^2f=\sum_{i,j=1}^n\frac{\partial^2 f}{\partial x^i\partial^x^j}dx^idx^j$ -- сохраняется только при линейных преобразованиях.

"более инвариантно"\"менее инвариантно" это демагогия. Речь шла о вполне конкретных вещах. А именно о том, в каком смысле у Фихтенгольца первый дифференциал инвариантен , и почему в этом смысле второй дифференциал инвариантным не является.

 Профиль  
                  
 
 Re: ошибки у Фихтенгольца
Сообщение14.06.2014, 12:16 


12/02/14
808
kp9r4d в сообщении #875101 писал(а):
corvus42 в сообщении #875091 писал(а):
вроде бы я где-то слышал, что задача выражения интеграла в элементарных функциях (если он выражается) уже алгоритмически разрешена

Я слышал об этом отсюда. Впрочем, в комментариях же написано, в каких местах там излишне передёргнуто.
В этом вроде ещё Лиувилль разобрался при царе Горохе :-)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 132 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group