fixfix
2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 11, 12, 13, 14, 15, 16, 17 ... 22  След.
 
 Re: Бесконечность
Сообщение18.01.2014, 16:42 


21/08/13

784
Ну, во-первых, всегда нужно помнить, что математика-
это не что-то самостоятельное, а инструмент, как и физика
зависящий от окружающей реальности. Просто до сих пор не
было необходимости подробно развить эту идею.
В физической реальности - да, мы не видим бесконечность
как объект, а видим лишь неограниченность материи. И
всякая попытка ее ограничить рано или поздно лишь приводит к созданию новой теории, снимающей это ограничение.
А в математике понятие бесконечности существует в самых
разных вариантах. Те же флюксии у Лейбница (бесконечно
малые как самостоятельные объекты). Надо только не
забывать, что бесконечно малое и бесконечно большое - в
сущности одно и то же.
А та же бесконечная окружность (в стереографической
проекции) или бесконечная точка, когда проецируем сферу?
Можно подобрать и другие примеры. Просто в области
геометрии они более наглядны. Хотя в геометрической
топологии, да при высоких размерностях, да если еще при
нецелых, о наглядности говорить сложнее.

 Профиль  
                  
 
 Re: Бесконечность
Сообщение18.01.2014, 17:55 
Заслуженный участник
Аватара пользователя


11/12/05
10379

(Оффтоп)


 Профиль  
                  
 
 Re: Бесконечность
Сообщение18.01.2014, 23:59 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)


 Профиль  
                  
 
 Re: Бесконечность
Сообщение19.01.2014, 00:50 
Заслуженный участник
Аватара пользователя


11/12/05
10379

(Оффтоп)


 Профиль  
                  
 
 Re: Бесконечность
Сообщение19.01.2014, 11:12 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)


 Профиль  
                  
 
 Re: Бесконечность
Сообщение19.01.2014, 15:51 
Заслуженный участник
Аватара пользователя


23/07/05
18035
Москва
Munin в сообщении #816371 писал(а):
Аналог $\int_{-\infty}^{+\infty}dx.$
Определяйте меру и интегрируйте на здоровье.

 Профиль  
                  
 
 Re: Бесконечность
Сообщение19.01.2014, 19:00 
Заслуженный участник
Аватара пользователя


11/12/05
10379

(Оффтоп)


 Профиль  
                  
 
 Re: Бесконечность
Сообщение19.01.2014, 19:04 


21/08/13

784
Aritaborian-у: Конечно, я слышал про прямую,
заполняющую квадрат. Но:
Во-первых, она заполняет его так, что расстояния между
соседними участками прямой становятся сколь угодно малыми. Если мы понимаем бесконечно малую в смысле
Лейбница, то есть она нечто самостоятельное, отличное от нуля и конечных чисел, то никакого заполнения не будет.
Если мы понимаем бесконечно малую как процесс, то
можно говорить о заполнении, но:
Во-вторых, для заполнения конечного квадрата требуется
бесконечная прямая, а о заполнении плоскости говорить
бессмысленно.
Любую математическую модель не следует возводить в
Абсолют.

 Профиль  
                  
 
 Re: Бесконечность
Сообщение19.01.2014, 19:15 
Заслуженный участник
Аватара пользователя


11/12/05
10379
Someone в сообщении #816586 писал(а):
Munin в сообщении #816371 писал(а): писал(а):
Аналог $\int_{-\infty}^{+\infty}dx.$
Определяйте меру и интегрируйте на здоровье.
Получим интеграл по множеству с мерой. С этим-то проблем не видится.
Мне лично неясно с суммированием, а именно постановка задачи:
Munin в сообщении #816371 писал(а):
Не континуум чисел, а по континууму чисел.

 Профиль  
                  
 
 Re: Бесконечность
Сообщение19.01.2014, 20:11 
Заслуженный участник
Аватара пользователя


23/07/05
18035
Москва

(epros)


 Профиль  
                  
 
 Re: Бесконечность
Сообщение20.01.2014, 01:23 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ratay в сообщении #816690 писал(а):
Во-первых, она заполняет его так, что расстояния между
соседними участками прямой становятся сколь угодно малыми.

Нет, не так.

ratay в сообщении #816690 писал(а):
Во-вторых, для заполнения конечного квадрата требуется бесконечная прямая, а о заполнении плоскости говорить бессмысленно.

Вы неверно информированы. Для заполнения квадрата достаточно отрезка длиной в его сторону.

(Оффтоп)


 Профиль  
                  
 
 Re: Бесконечность
Сообщение20.01.2014, 17:12 


21/08/13

784
Что касается того, что для заполнения квадрата отрезком
достаточно отрезка длиной в его сторону, то ведь сама
прямая Пеано, находящаяся внутри квадрата, имеет
бесконечную длину, ничего нового нам не дает. Мы точно
также можем спроецировать конечную полуокружность на
бесконечную прямую. Но в этом случае мы имеем две
бесконечные точки, качественно отличные от всех остальных точек полуокружности. А в случае с кривой Пеано мы имеем кратные точки, то есть отрезок приобретает структуру.
Когда мы говорим, что при бесконечном делении квадрат
становится точкой - это лишь один из вариантов понимания
бесконечно малой, ньютоновский. О двух равноправных
способах понимания бесконечно малой уже говорилось.
И последнее: для плоскости (а не квадрата) этот способ
уже не годится. То есть это все-таки частный случай.

 Профиль  
                  
 
 Re: Бесконечность
Сообщение20.01.2014, 19:00 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
А почему вы решили, что оппоненты имели в виду именно кривую Пеано? Если не накладывать условие непрерывности, можно построить вполне себе взаимно однозначное отображение отрезка на квадрат. И даже на интервал, что не менее удивительно.

 Профиль  
                  
 
 Re: Бесконечность
Сообщение20.01.2014, 19:02 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ratay в сообщении #817003 писал(а):
сама прямая Пеано, находящаяся внутри квадрата

Нет такой прямой.

ratay в сообщении #817003 писал(а):
Мы точно также можем спроецировать конечную полуокружность на бесконечную прямую.

Ну надо же, что-то вспомнили. Придётся исключить вас из категории абсолютно безнадёжных. Но выше вы пока не поднялись.

ratay в сообщении #817003 писал(а):
Но в этом случае мы имеем две бесконечные точки, качественно отличные от всех остальных точек полуокружности.

Я же говорил, что что-то под ковёр придётся заметать. Впрочем, как это сделать, хорошо известно. Выбираете счётное множество точек, и сдвигаете их на конечное число.

ratay в сообщении #817003 писал(а):
Когда мы говорим, что при бесконечном делении квадрат становится точкой

А кто такое говорит, кроме вас?

ratay в сообщении #817003 писал(а):
И последнее: для плоскости (а не квадрата) этот способ уже не годится.

Если вы знаете способ спроецировать полуокружность на прямую, то сможете сообразить и способ спроецировать квадрат на плоскость.

Но это уже упражнение более высокого уровня. Оно потребует от вас не прочитанной когда-то умной книжки, а шевеления своими мозгами. Зато, если справитесь, подниметесь ещё на ступеньку. Станете человеком разумным, просто необразованным и с замусоренными мозгами.

-- 20.01.2014 20:03:56 --

provincialka в сообщении #817065 писал(а):
А почему вы решили, что оппоненты имели в виду именно кривую Пеано? Если не накладывать условие непрерывности, можно построить вполне себе взаимно однозначное отображение отрезка на квадрат.

Разумеется, я имел в виду не кривую Пеано. Я имел в виду преобразование десятичных дробей: нечётные цифры становятся цифрами координаты $x,$ а чётные - цифрами координаты $y.$

 Профиль  
                  
 
 Re: Бесконечность
Сообщение20.01.2014, 19:07 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Munin в сообщении #817066 писал(а):
Разумеется, я имел в виду не кривую Пеано.

Я догадалась :-)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 317 ]  На страницу Пред.  1 ... 11, 12, 13, 14, 15, 16, 17 ... 22  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group