Мне кажется, что к характеристикам времени это не имеет непосредственного отношения. Натуральный ряд бесконечен, это известно. Но вот в каком смысле он существует? В классической логике смысл существования только один: выражаемый соответствующим квантором. Поэтому если мы хотим пользоваться натуральными числами, нам приходится принять существование бесконечного натурального ряда за аксиому. И тут нет никаких вариантов: "потенциальная" у него бесконечность или "актуальная" отличить невозможно, поскольку аксиоматика-то одна.
Вообще-то, в арифметике мы ничего о существовании натурального ряда сказать не можем, поскольку он натуральным числом не является, а объектами арифметики являются натуральные числа. Тем не менее, в арифметике мы можем говорить о множествах натуральных чисел, задавая их, скажем, формулами языка:

, где

— формула с единственной свободной переменной

. Это даёт консервативное расширение языка арифметики. Натуральный ряд можно определить как множество

.
Однако хочу напомнить Вам, что в арифметике (и не только в арифметике) квантор можно "навесить" только на переменную, а переменные (и константы) есть только для натуральных чисел. Написать

или

, где

— не переменная, нельзя.
А вот относительно конструктивной математики я не совсем согласен. Ибо конструктивная логика как раз различает два вида существования: собственно "объект существует" и "объект не может не существовать". Причём из второго первое не обязательно следует. Я бы сказал, что первое - это как раз и есть "актуальное существование", а второе, соответственно, "потенциальное существование". Вы можете спросить, какое отношение это имеет к актуальности или потенциальности бесконечности.
Я не буду спрашивать, поскольку и сам знаю, что это не имеет никакого отношения не только к потенциальной или актуальной бесконечности, но и к бесконечности вообще.
Я так полагаю, что правильнее говорить про "актуально существующий бесконечный объект (или множество)" и про "потенциально существующий бесконечный объект или множество". Раз уж в логике есть два вида существования, данные слова нормально формализуемы. Вот и всё, "актуальная" или "потенциальная" бесконечность - это всего лишь сокращённая форма тех же самых словосочетаний.
Это ерунда. В арифметике (не важно, конструктивистской или классический) множество

безусловно считается существующим. А ваше предложение является бессмысленным, поскольку по правилам языка арифметики мы не можем написать ни

, ни

, ни

.
Что касается конструктивного рекурсивного анализа школы Маркова, то у них есть специальный язык для описания множеств, чтобы с множествами могли работать алгоритмы. И подход у них такой же: если множество определено (описано в этом языке), то оно существует. А его конечность или бесконечность к делу отношения не имеет.
Аксиоматика чисел в математическом анализе построена именно на понятии "актуальная бесконечность"(см. "мощность множеств).
Это ерунда. Правда состоит в том, что в математике нет ни потенциальной, ни актуальной бесконечности.