2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 17, 18, 19, 20, 21, 22, 23 ... 58  След.
 
 Re: Обсуждение и разбор марафонских задач
Сообщение24.11.2013, 21:07 
Заслуженный участник


27/06/08
4063
Волгоград
Yadryara в сообщении #792177 писал(а):
VAL в сообщении #792034 писал(а):

Признаюсь честно, потратив некоторое количество сил на разгадывание ребуса "какой буковкой что обозначено в решении Антона?", я сдался и решил поверить "на слово".

Каюсь, не всё тщательно расписал. Очень важно было не ошибиться в длиннющих формулах.

В моём решении, явно не указаны обозначения $f$, $i$ и $j$, а также $f_a$, $i_a$ и $j_a$. Это абсциссы "Омеги" и "Альфы" соответственно. Для трёх моментов времени. Я полагал, что это понятно из приведённых Пифагоровых уравнений.
В общем-то, конечно, понятно.
Но я поленился вникать во все детали, а отсутствие пояснений смысла некоторых обозначений использовал как отмазку :-)
Цитата:
Не "корысти ради, а токмо волею пославшей мя жены" хочу ещё раз отметить, что во втором случае минимум достигается через $16,2$ секунды после "затмения" а не до, то есть в $13:45:16,2$ , а не в $13:44:44$, как следует из решения и рисунка Олега.

То есть либо мы с Анатолием ошиблись, либо Олег перепутал знак.
Учитывая, что в других решениях (включая мое собственное) минимум тоже настает после 13:45, следует признать наиболее вероятным второе объяснение.

Я же, со свойственным мне вниманием проморгал этот момент.
Цитата:
$187$-ю задачу, как и $182$-ю пропускаю, поскольку в условии и той и другой задачи есть слово "доказать". А я, мягко говоря, не силён в доказательствах. :-(
Специально для Вас готов заменить это слово, на слово "показать" :-)

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение25.11.2013, 07:40 
Аватара пользователя


29/04/13
8307
Богородский
VAL в сообщении #792034 писал(а):
Я старался, что ответ был получше (не случайно же с условии появились корни). И подобрал соответствующие данные. Откуда при публикации выскочило другое время, в которое маяк и суда оказались на одной прямой, мне неизвестно.

У меня есть 3 хороших варианта Вашего первоначального времени.

И самым хорошим пока считаю $13:03:45$.

Но Вы пока не говорите, так это или нет. Я хочу, не торопясь, всё посчитать.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение26.11.2013, 11:59 
Аватара пользователя


29/04/13
8307
Богородский
VAL в сообщении #792034 писал(а):
Приведу точное значение обоих возможных ответов: $d_1=\frac{6\sqrt2(7\sqrt{493}-155)}{\sqrt{8381-373\sqrt{493}}}$

А вот и не точное, увы. Разбираясь с радикальными во всех смыслах :-) вычислениями решил проверить и основные ответы. Должно быть $372$ вместо $373$.

Дальнейшие расчёты продолжу. Что-то не могу пока расстаться с этой задачей, пока не выясню кое-какие моменты.

Спасибо.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение26.11.2013, 17:45 
Заслуженный участник


27/06/08
4063
Волгоград
Yadryara в сообщении #792851 писал(а):
VAL в сообщении #792034 писал(а):
Приведу точное значение обоих возможных ответов: $d_1=\frac{6\sqrt2(7\sqrt{493}-155)}{\sqrt{8381-373\sqrt{493}}}$

А вот и не точное, увы. Разбираясь с радикальными во всех смыслах :-) вычислениями решил проверить и основные ответы. Должно быть $372$ вместо $373$.
Ну и дотошность!
Спасибо! Исправил.
Мы стали на шаг ближе к разгадке тайны, откуда взялось такое время прекрытия "Омеги" "Альфой" :-)

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение27.11.2013, 20:01 
Аватара пользователя


29/04/13
8307
Богородский
Видимо, всё-таки было задумано время "затмения" $13:30$. При этом минимальное расстояние между судами достигается в $13:45:06$. Из-за этого, возможно, автор и перепутал одно время с другим. При этом минимумы записываются попроще:
$$\frac{18}{\sqrt{739/2 + 583\sqrt{2/5}}}$$
$$6\sqrt{\frac{710-172\sqrt{10}}{5785}}$$

Тоже не очень короткие выражения.

Есть ещё идея, что первоначально автор хотел упомянуть не о времени "затмения", а о достижении минимума ровно в $13:45$. В этом случае, выражения, по предварительным расчётам, будут ещё длиннее.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение27.11.2013, 20:40 
Заслуженный участник


27/06/08
4063
Волгоград
Yadryara в сообщении #793507 писал(а):
Видимо, всё-таки было задумано время "затмения" $13:30$. При этом минимальное расстояние между судами достигается в $13:45:06$. Из-за этого, возможно, автор и перепутал одно время с другим. При этом минимумы записываются попроще:
$$\frac{18}{\sqrt{739/2 + 583\sqrt{2/5}}}$$
$$6\sqrt{\frac{710-172\sqrt{10}}{5785}}$$

Тоже не очень короткие выражения.
Поскольку не те.
Цитата:

Есть ещё идея, что первоначально автор хотел упомянуть не о времени "затмения", а о достижении минимума ровно в $13:45$. В этом случае, выражения, по предварительным расчётам, будут ещё длиннее.
Таким образом, случайно исказить условие не способен даже я :-)

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение28.11.2013, 16:49 
Аватара пользователя


29/04/13
8307
Богородский
Значит всё-таки было задумано время "затмения" $12:45$.

Вариант 1. Угол между направлениями судов $\approx8.13$ градусов. Они столкнутся в $14:00:00$.

Вариант 2. Угол между направлениями судов $ = 135$ градусов. При этом минимум достигается примерно в $12:45:31$ и равен

$$12\sqrt{\frac2{29}}$$ километров.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение28.11.2013, 17:36 
Заслуженный участник


03/12/07
373
Україна
Или такой вариант:
время "затмения" $12:15$, минимум достигается в $12\frac{7}{29}$, что примерно равно $12:14:29$ и равен $12\sqrt{\frac2{29}}$ километров.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение28.11.2013, 17:47 
Аватара пользователя


29/04/13
8307
Богородский
Тогда трудней перепутать. $12:45$ отличается от $13:45$ одним символом, а $12:15$ -- двумя.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение28.11.2013, 20:55 
Заслуженный участник


27/06/08
4063
Волгоград
Yadryara в сообщении #793809 писал(а):
Значит всё-таки было задумано время "затмения" $12:45$.

Вариант 1. Угол между направлениями судов $\approx8.13$ градусов. Они столкнутся в $14:00:00$.

Вариант 2. Угол между направлениями судов $ = 135$ градусов. При этом минимум достигается примерно в $12:45:31$ и равен

$$12\sqrt{\frac2{29}}$$ километров.
Все верно!

Меня привлек именно этот вариант.
Во-первых, все вычисления (с не более чем одноэтажными небольшими корнями) не сложно проделать руками.
Во-вторых, этот случай не вырожден (как тот, когда курсы судов лежат на параллельных прямых). Но, в то же время, дуаль, возникающая в других невырожденных случаях, здесь, как бы, и не совсем дуаль, а изюминка. Одно решение мирное. А другое катастрофическое, то ли постороннее, то ли наоборот, главное (поскольку в нем минимум радикальнее).

VAL в сообщении #792988 писал(а):
Yadryara в сообщении #792851 писал(а):
Разбираясь с радикальными во всех смыслах :-) вычислениями решил проверить и основные ответы. Должно быть $372$ вместо $373$.

Мы стали на шаг ближе к разгадке тайны, откуда взялось такое время перекрытия "Омеги" "Альфой" :-)
Как видите, это очепятка абсолютный клон предыдущей. Тоже тройка вместо двойки встряла.

-- 28 ноя 2013, 21:08 --

Edward_Tur в сообщении #793835 писал(а):
Или такой вариант:
время "затмения" $12:15$, минимум достигается в $12\frac{7}{29}$, что примерно равно $12:14:29$ и равен $12\sqrt{\frac2{29}}$ километров.

Этот вариант лишнее подтверждение моей версии, что любое время "затмения", кроме 13:45 приводит в приличному ответу :-)
Но верный вариант (точнее, вариант из моих черновиков) приведен все же у Антона.

Кстати, если время "затмения" - 12:15, дуали не возникает? (Я этот вариант не считал.)

PS: Edward, я рад, что Вы следите за Марафоном. Не желаете ли вернутся из стана болельщиков в когорту действующих марафонцев?

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение29.11.2013, 11:17 
Заслуженный участник


27/06/08
4063
Волгоград
========= ММ187 ==========

Можно обойтись без эллиптических кривых

ММ187 (6 баллов)

Доказать, что существует бесконечно много пар натуральных чисел $(a,b)$, таких что $\frac{a^2+b^2}{ab+1}$ является натуральным числом.
Доказать, что существует бесконечно много пар, для которых $\frac{a^2+b^2}{ab+1}= 1369$.
Существуют ли пары, для которых $\frac{a^2+b^2}{ab+1} = 2013$?

Решение

Нарушу традиции и приведу решения Виктора Филимоненкова и Дмитрия Пашуткина (поразившее меня своей краткостью).


Обсуждение

Любопытна история ММ187. Лет двадцать назад задачу, послужившую основой ММ187, мне задал один абитуриент, когда принимал у него вступительный экзамен по математике. Случай в моей практике уникальный.
Как выяснилось, исходная задача (IMO 1988) "широко известна в узких кругах". Например, метод Vieta jumping объясняется в англоязычной Википедии именно на примере этой задачи, а в русскоязычной Википедии ссылка на эту статью есть в статье "Олимпиадные математические задачи". Более того, статью "Vieta jumping" и ссылку на нее разместил Макс Алексеев - свой человек в Математическом марафоне. Так что, насчет узких кругов я написал не для красного словца.

Натуральными числами вида $\frac{a^2+b^2}{ab+1}$ являются квадраты $GCD(a,b)$, и только они. Я сознательно составил задачу так, чтобы справиться со всеми тремя пунктами можно было, не опираясь на это утверждение: для первого достаточно пар $(a,a^3)$; для второго просто строится рекуррентная последовательность для значения 1369; для третьего достаточно заметить, что 2013 делится на 3, но не делится на 9 (из решения Дмитрия Пашуткина видно, что можно прийти к верному выводу и иначе).

На этот раз марафонцы не особо стремились к обобщениям. Единственным участником, предложившим серьезное обобщение ММ187, оказался Олег Полубасов. Я не привожу этого обобщения по двум причинам:
1) я еще сам не конца разобрался во всех деталях (а разбор ММ187 и без того запаздывает);
2) те детали, в которых я успел разобраться, все равно, попридержу, поскольку они могут послужить основой для новых задач :-)
Замечу только, что Олег "танцевал" от тесной связи ММ187 с ММ135 и ММ164.

Награды

За правильное решение и обобщение задачи ММ187 Олег Полубасов получает 11 призовых баллов. За правильное решение задачи (или ее отдельных пунктов) Анатолий Казмерчук, Сергей Половинкин, Виктор Филимоненков, Дмитрий Пашуткин получают по 6 баллов, Евгений Гужавин - 4 балла, Николай Дерюгин и Владимир Дорофеев - по 2 призовых балла.

Эстетическая оценка задачи 4.8 балла


Вложения:
Комментарий к файлу: Решение Дмитрия Пашуткина
Pashutkin_MM187.pdf [56.82 Кб]
Скачиваний: 589
Комментарий к файлу: Решение Виктора Филимоненкова
fiviol_MM187.doc [25 Кб]
Скачиваний: 548
 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение29.11.2013, 16:47 
Аватара пользователя


29/04/13
8307
Богородский
VAL в сообщении #793909 писал(а):
Но, в то же время, дуаль, возникающая в других невырожденных случаях, здесь, как бы, и не совсем дуаль, а изюминка. Одно решение мирное. А другое катастрофическое, то ли постороннее, то ли наоборот, главное (поскольку в нем минимум радикальнее).
...
Кстати, если время "затмения" - 12:15, дуали не возникает? (Я этот вариант не считал.)

Только что заметил этот вопрос. Конечно возникает. Здесь изюминка существенно круче.

Если позволите такое выражение, все решения исходной задачи симметричны относительно $12:30$. Зная решение для "затмения" в $12:45$, сразу же можно найти их и для $12:15$. Зная для $13:30$ -- для $11:30$. И т. д.

Из этого утверждения следует, что столкновение могло быть в $11:00:00$. Но в условии ничего не сказано о том, как долго корабли двигались прямолинейно и равномерно.

1-й вариант условия.
Оговорить, что суда начали движение после $11:00$. Скажем, в $11:05$. Всё скучно и логично. Минимум имеет место в момент старта.

2-й вариант условия. Экзотический.
Предположить, что в $11:00:00$ произошёл своеобразный "Большой Взрыв", в результате которого образовались буксир и сухогруз, начавшие в этот же момент равномерное прямолинейное движение :-)

3-й вариант условия. Чуть менее экзотический.
Оговорить, что суда могут преспокойно пройти друг через друга без повреждений. Считать их нематериальными точками. После столкновения в $11:00$, суда, как ни в чём не бывало, продолжили своё равномерное прямолинейное движение.

Так что время "затмения" $12:15$ весьма коварно :-)

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение29.11.2013, 16:55 
Заслуженный участник


27/06/08
4063
Волгоград
Yadryara в сообщении #794249 писал(а):
VAL в сообщении #793909 писал(а):
Кстати, если время "затмения" - 12:15, дуали не возникает? (Я этот вариант не считал.)

Только что заметил этот вопрос. Конечно возникает. Здесь изюминка существенно круче.

Если позволите такое выражение, все решения исходной задачи симметричны относительно $12:30$
Угу.
Можно было и без вычислений заметить.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение05.12.2013, 23:52 
Заслуженный участник


27/06/08
4063
Волгоград
В лучших традициях традициях XIX тура Марафона срок приема решений задачи ММ188 продлен на двое суток, до 7.12.13

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение08.12.2013, 10:38 
Заслуженный участник


27/06/08
4063
Волгоград
========= ММ188 ==========

Когда трехмерный случай сложнее четырехмерного

ММ188 (9 баллов)

1. $a,b,c,d$ - векторы трехмерного евклидова пространства (не обязательно различные).
$M = \{\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\}\}$. Подмножество множества $M$ назовем хорошим, если при подходящем выборе векторов все тройки из данного подмножества образуют базис, а остальные не образуют. Сколько хороших подмножеств у $M$?
2. Тот же вопрос для пяти векторов в четырехмерном пространстве.
3. Тот же вопрос для пяти векторов в трехмерном пространстве.

Решение

Привожу два решения:
четкое, обоснованное, без "излишеств" - Виктора Филимоненкова;
с введением терминологии и исследованием более общего случая - Олега Полубасова.

Обсуждение

Предлагая эту задачу, я полагал, что основные трудности решения связаны, с пунктом 3, и именно с комбинаторной частью задачи: корректно разбить подмножества множества $M$ на классы эквивалентных подмножеств (не перебирать же все 1024 случая отдельно) и найти мощность каждого класса.
Но, вопреки моим ожиданиям, оказалось, что главный источник преткновений - линейная алгебра. В частности, не подтвердился эпиграф "трехмерный случай сложнее четырехмерного": есть решение, где трехмерный случай посчитан правильно, а четырехмерный - с ошибками. Обратных же примеров - нет.

Не подтвердилась и вторая моя гипотеза. Я полагал, что задача получит низкую оценку из-за "муторности" решения. Однако, задача участникам Марафона, в целом, понравилась.

Совершенно очевидно (по крайней мере, "с моей колокольни") обобщение 1-го и 2-го пунктов задачи на случай n-мерного пространства.
Если $M$ состоит из всех сочетаний (n+1)-элементного множества по n элементов, то все $2^{n+1}$ подмножеств будут хорошими.

На другие очевидные по постановке, но не по методам и результатам результатам, обобщения отважились всего двое марафонцев. Их успехи на этом пути оценены дополнительными призовыми баллами.
Интересные вопросы, оставшиеся без ответов, приведены в дополнении к решению Олега Полубасова.

Награды

За правильное решение и обобщение задачи ММ188 Олег Полубасов получает 14, а Анатолий Казмерчук - 11 призовых баллов. За правильное решение задачи (или ее отдельных частей) Сергей Половинкин и Виктор Филимоненков получают по 9 баллов, Дмитрий Пашуткин - 7 баллов, Антон Никонов и Николай Дерюгин - по 2 призовых балла.

Эстетическая оценка задачи 4.8 балла


Вложения:
Комментарий к файлу: Дополнение к решению Олега Полубасова
MM188_дополнительно_Полубасов.pdf [392 Кб]
Скачиваний: 573
Комментарий к файлу: Решение Олега Полубасова
MM188_Полубасов.pdf [553.39 Кб]
Скачиваний: 554
Комментарий к файлу: Решение Виктора Филимоненкова
MM188_fiviol.doc [59.5 Кб]
Скачиваний: 554
 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 861 ]  На страницу Пред.  1 ... 17, 18, 19, 20, 21, 22, 23 ... 58  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group