================================Вектором граней выпуклого многогранника

назовем набор
![$[f_3, f_4, \dots, f_s]$ $[f_3, f_4, \dots, f_s]$](https://dxdy-04.korotkov.co.uk/f/3/d/5/3d53533e0b9d3014af91ea6e9feada5482.png)
, где

– количество i-угольных граней

, а

- наибольшее число сторон грани.
===========ММ280===============ММ270 (13 баллов)
Каждой твари по … тройке Какие векторы граней может иметь выпуклый многогранник, если в этих векторах нет чисел, отличных от 3 и 0?
Решение Привожу решения Константина Шамсутдинова и Мераба Левиашвили.
ОбсуждениеЗаключительная задача традиционно планировалась как самая сложная в конкурсе и соответственно оценивалась дорого. Это не стало камнем преткновения для конкурсантов. Большинство из них уверенно справились с задачей. А Мераб Левиашвили не выдержал и прислал таки большое (несколько десятков страниц) обобщение. Не выдержал и ведущий и (вопреки новым правилам) поощрил Мераба дополнительными призовыми баллами. В свое оправдание скажу:
1) в новых правилах оставлена лазейка для такого поощрения;
2) Мераб и без того занял бы чистое первое место. Так что спортивного значения скромные (по сравнению с огромной проделанной работой) дополнительные баллы не имеют.
Отмечу, что в приведенном решении представлена лишь часть обобщения ММ280.
Вторую часть не публикую по следующим причинам:
1. Я пока только в самых общих чертах посмотрел труд Мераба. Откладывать разбор задачи до полного его изучения - значит подвешивать практически завершенный конкурс на неопределенный срок. Это ровно то, от чего я пытался уйти.
2. Надо бы проверить (например, спросить на MathOverFlow) является ли полученные результаты новыми. В случае положительного ответа я бы рекомендовал Мерабу опубликовать их.
3. Возможно, я использую обобщение (не обязательно целиком) в качестве темы исследовательской работы продвинутых старшеклассников. В таком случае наличие легко находимого готового решения - плохое подспорье.
Два слова о решении Константина (подход которого оформлению результатов - полная противоположность подходу Мераба).
Но интересно не это, а способ представления выпуклых многогранников. Все остальные участники традиционно используют классический подход - через теорему Штайница. В результате некоторые графы, представляющие требуемые многогранники выглядят ужасно. В отличие от картинок Константина.
НаградыЗа решение задачи ММ280 конкурсантам начислены следующие призовые баллы:
Мераб Левиашвили - 15;
Виктор Филимоненков - 13;
Константин Шамсутдинов - 13;
Денис Овчинников - 13;
Владислав Франк - 7.
Эстетическая оценка задачи - 4.9 балла