Дело в том, что

и

- это далеко не все возможные функции, которые бывают. Не совершайте этой ошибки! Любая (непрямая) линия, которую вы нарисуете на бумаге, может быть графиком какой-то функции (почти любая, ограничения незначительны). Не говоря уже о том, что любая формула, которую вы напишете. Функций бесконечно много - даже больше, чем чисел. Более того, бывают функции не от чисел, и значениями которых являются не числа. И во всём этом разнообразии

и

- самые простые и скучные примеры функций.
Ещё в школе вы познакомитесь:
- с полиномиальными функциями

;
- с дробными функциями

;
- с дробно-степенными функциями

;
- с показательной, логарифмической и тригонометрическими функциями

;
- с кусочно-заданными функциями;
а в вузе вас ждут:
- функции, не выражающиеся в элементарных (то есть, их нельзя записать через формулу);
- всюду разрывные функции (то есть, их нельзя задать графиком);
- функции многих переменных, и принимающие значения в пространстве многих переменных;
- функции на множествах, и принимающие значения - тоже множества;
и многие другие более сложные и экзотические случаи. И при этом везде используются обозначения со скобками, как общепонятные. Например, я сейчас читаю статью, в которой на одной странице:

Всё это - функции и их значения при определённых аргументах.