У меня тоже мистика чисел, точнее магия
Ничего особенного, выбраны 49 попарно различных простых чисел и размещены в матрице 7х7 так, что суммы чисел во всех строках, столбцах и всевозможных диагоналях равны (всего 28 сумм).
[для изображения воспользовалась программой проходящего сейчас международного конкурса программистов; автор программы Ed Mertensotto; на картинке не отображаются числа большие 49, так как в конкурсе квадраты надо заполнять числами от 1 до
.]
Головоломка опубликована здесь:
http://www.primepuzzles.net/puzzles/puzz_663.htmНо задача не решена до конца. Требуется добиться того, чтобы магическая константа квадрата (в приведённом квадрате она равна 1597) была минимальной или же доказать, что уменьшить её невозможно.
Кстати,
VAL, неплохая задача для вашего Математического Марафона.
Помнится, очень давно я предлагала вам сделать спецвыпуск Марафона, посвящённый магическим квадратам. Увы, предложение не принято. А почему?
Вот задачи уже потихоньку выходят на мировую сцену, а в родном Отечестве они почти никого не интересуют (не считая 2-3 коллег).
Задача не заканчивается на квадрате 7-го порядка.
Мне удалось составить подобные квадраты порядков 11 и 13. Тут, как нетрудно видеть, речь идёт о квадратах порядков, являющихся простым числом. Для других порядков построение таких квадратов выполняется проще, работают другие алгоритмы.
Составить квадрат 13-го порядка было непросто. Тут мне очень помогла программа, написанная
EtCetera (тема тут есть про выборку).
Однако квадрат 17-го порядка мне составить не удалось. Чем не задача для Марафона?
Недавно на ПЕН тему новую увидела о NP-полных задачах. Оценивается сложность различных алгоритмов.
Как оценить сложность алгоритма составления пандиагонального квадрата 17-го порядка из простых чисел? Надо выбрать 289 попарно различных простых чисел и разместить их в матрице 17х17, чтобы выполнялись условия для пандиагонального магического квадрата. Ничего об этих числах неизвестно, кроме того, что они простые. А простых чисел бесконечно много.
Какова же сложность такого алгоритма?
Мой алгоритм базируется на алгоритме Россера, но... есть существенное добавление - алгоритм смешанного достраивания (здесь и нужна программа выборки).