2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 19  След.
 
 Re: О проблеме Гольдбаха
Сообщение19.07.2012, 11:45 


23/02/12
3372
vorvalm в сообщении #596868 писал(а):
vorvalm в сообщении #595897 писал(а):
Оценку числа "чистых" разностей в интервале $(1,p^2_{r+1})$
можно получить, используя среднее число этих разностей в ПСВ по модулю $M>210.$
$N(B[6])\approx 2p_{r+1}(p_{r+1}-1)(\varphi_2(M)-\varphi_3(M))/M.$
Например, при $M=2310, p_{r+1}=13, \varphi_2(M)=135, \varphi_3(M)=64, N(B[6])\approx 10.$
Можно, конечно, привести полное доказательство бесконечности чистых разностей $d=6$, но оно будет мало отличаться от теоремы о близнецах.

Наверно так и должно быть, ведь идеи теже.

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение20.07.2012, 11:21 


31/12/10
1555
Sonic86
Чтобы не отвлекать полемику о треугольнике Гильбрайта, я хотел бы уточнить вопрос по вашей ссылке А048670.
Я не нашел точного перевода этой последовательности, но по первым ее членам понял, что это максимальные разности ($d_{\max}$) в ПСВ по модулю $M=p_r\#,$ расположенные в порядке индексов $r$ простых чисел, составляющих модуль М.
В свое время я занимался этой проблемой с целью найти зависимость $d_\max$ от $p_r$, т.к. первые разности до $p=19$ однозначно показывали, что $d_{\max}=2p_{r-1}.$ Однако, при увеличении $p_r$ оказалось, что $d_\max$ может быть и больше $2p_{r-1}.$
Какой-либо закономерности в этом я не нашел.
Но я не об этом. Внимательно просмотрев последовательность А048670 я обнаружил несоответствие приведенных данных с моими. До $r=13(p=41)$ все сходится, но c $r=14(p=43)$ начинаются расхождения(в скобках мои данные).
14\90(82), 15\100(92), 16\106(98), 17\118(106), 18\132(118), 19\152(126),
20\174(140), 21\190(144), 22\200(148)...
- затем $d_\max$ резко увеличивается, хотя по моим данным она удерживается в интервале $2p_{r-1}\leqslant d_{\max} < 2p_{r+1}.$

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение20.07.2012, 16:31 
Заслуженный участник


08/04/08
8562
vorvalm в сообщении #597172 писал(а):
Я не нашел точного перевода этой последовательности, но по первым ее членам понял, что это максимальные разности ($d_{\max}$) в ПСВ по модулю $M=p_r\#,$ расположенные в порядке индексов $r$ простых чисел, составляющих модуль М.
Да.

vorvalm в сообщении #597172 писал(а):
В свое время я занимался этой проблемой с целью найти зависимость $d_\max$ от $p_r$, т.к. первые разности до $p=19$ однозначно показывали, что $d_{\max}=2p_{r-1}.$ Однако, при увеличении $p_r$ оказалось, что $d_\max$ может быть и больше $2p_{r-1}.$
Какой-либо закономерности в этом я не нашел.
Если я правильно понимаю, то эта оценка связана с оценкой разностей $p_{n+1}-p_n$. Т.е. скорее всего это сложная задача.

vorvalm в сообщении #597172 писал(а):
Но я не об этом. Внимательно просмотрев последовательность А048670 я обнаружил несоответствие приведенных данных с моими. До $r=13(p=41)$ все сходится, но c $r=14(p=43)$ начинаются расхождения(в скобках мои данные).
14\90(82), 15\100(92), 16\106(98), 17\118(106), 18\132(118), 19\152(126),
20\174(140), 21\190(144), 22\200(148)...
- затем $d_\max$ резко увеличивается
Не знаю, я до $p_r=67$ доходил с помощью компа очень тупым алгоритмом (мне вообще интересно, как авторы нашли столько значений этой функции. Нашел тогда какую-то статью про вычисление, но не осилил). У меня сейчас всего этого нет, но, думается, что там ошибок нет. Можно попробовать пересчитать. Хотя бы для $r=14$ - попытаться подтвердить оценку авторов - это легче просто сделать, чем искать оценку сверху.

vorvalm в сообщении #597172 писал(а):
хотя по моим данным она удерживается в интервале $2p_{r-1}\leqslant d_{\max} < 2p_{r+1}.$
В смысле это доказано или эмпирически? В любом случае - не знаю, не помню. ее сложно считать.

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение21.07.2012, 08:35 


31/12/10
1555
Sonic86 в сообщении #597245 писал(а):
Если я правильно понимаю, то эта оценка связана с оценкой разностей $p_{n+1}-p_n$ . Т.е. скорее всего это сложная задача.

Да, именно так. Если найти механизм образования $d_{\max},$
то это даст выход на $p_{r+1}-p_n.$

В отношении расхождений в данных может быть и моя ошибка.
Архивы по этому вопросу не сохранились, а начинать снова уже нет смысла.

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение23.07.2012, 11:20 


23/02/12
3372
vorvalm в сообщении #597172 писал(а):
Чтобы не отвлекать полемику о треугольнике Гильбрайта, я хотел бы уточнить вопрос по вашей ссылке А048670.
Я не нашел точного перевода этой последовательности, но по первым ее членам понял, что это максимальные разности ($d_{\max}$) в ПСВ по модулю $M=p_r\#,$ расположенные в порядке индексов $r$ простых чисел, составляющих модуль М.
В свое время я занимался этой проблемой с целью найти зависимость $d_\max$ от $p_r$, т.к. первые разности до $p=19$ однозначно показывали, что $d_{\max}=2p_{r-1}.$ Однако, при увеличении $p_r$ оказалось, что $d_\max$ может быть и больше $2p_{r-1}.$
Какой-либо закономерности в этом я не нашел.
Но я не об этом. Внимательно просмотрев последовательность А048670 я обнаружил несоответствие приведенных данных с моими. До $r=13(p=41)$ все сходится, но c $r=14(p=43)$ начинаются расхождения(в скобках мои данные).
14\90(82), 15\100(92), 16\106(98), 17\118(106), 18\132(118), 19\152(126),
20\174(140), 21\190(144), 22\200(148)...
- затем $d_\max$ резко увеличивается, хотя по моим данным она удерживается в интервале $2p_{r-1}\leqslant d_{\max} < 2p_{r+1}.$

Не понял почему при m=2310 максимальный интервал равен 14, а не 12=13-1? При m=30030 - 22, а не 16=17-1? При m= 510510 - 26. а не 18=19-1?

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение23.07.2012, 15:59 


31/12/10
1555
Это тот случай, когда на стыках $nRSD(M)$ числа $nM_{r-2}\pm 1$ кратны одно $p_r,$ другое $p_{r-1}$.
Например, при ПСВ(2310),
$M_{r-2}=30, \;n=4, \;4\cdot30+1=121,\;4\cdot30-1=119, \;d_{\max}=127-113=14.$
На другие ПСВ(М) это так же распространяется, но дело в том, что после $p_r=19$
эти разности не являются максимальными в данной ПСВ,
т.е. разности $d_{\max}$ могут быть и больше $2p_{r-1}.$

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение24.07.2012, 09:04 


23/02/12
3372
Добрый день! А при ПСВ(30030) как определить между какими вычетами находится максимальный интервал 22? А также 15 вычетов меньше и больше данных чисел?

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение24.07.2012, 10:53 


31/12/10
1555
Вообще, для любой ПСВ разность $d=2p_{r-1}$ определяется из сравнения:
$nM_{r-2}\equiv\pm1(\mod p_r), (n,p_r)=1.$
Здесь два решения, т.е. две разности, причем $n_1+n_2=p_r p_{r-1}$.
Для ПСВ(30030), $M_{r-2}=210,\;n \cdot 210\equiv\pm 1(\mod 13),\;n_1=45,\;n_2=98,\;n_1+n_2=143.$
Эти разности расположены в ПСВ симметрично относительно $0,5M_r.$
А вот насчет 15-ти вычетов я не понял...

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение24.07.2012, 11:50 


23/02/12
3372
Меня интересуют, как два вычета, между которыми достигается максимальный интервал, а также по 15 вычетов с обеих сторон от этих двух.

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение24.07.2012, 12:03 


31/12/10
1555
Странно... Почему именно !5.

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение24.07.2012, 18:48 


23/02/12
3372
vorvalm в сообщении #598577 писал(а):
Странно... Почему именно 15.

Примерно столько нужно для определения ИС для данного модуля.

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение25.07.2012, 08:50 


31/12/10
1555
На стыках $nM_{r-2}$ в ПСВ($M_r$), где есть
разности $d=2p_{r-1}$, должны быть вычеты:
$nM_{r-2}\pm (p_{r-1}, p_r, p_{r+1},....p^2_{r-1})$, oднако
среди них могут быть вычеты, кратные $p_r$ или $p_{r-1},$
т.е. там будут "дырки" (пробелы).

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение25.07.2012, 11:43 


23/02/12
3372
vorvalm в сообщении #598985 писал(а):
На стыках $nM_{r-2}$ в ПСВ($M_r$), где есть
разности $d=2p_{r-1}$, должны быть вычеты:
$nM_{r-2}\pm (p_{r-1}, p_r, p_{r+1},....p^2_{r-1})$, oднако
среди них могут быть вычеты, кратные $p_r$ или $p_{r-1},$
т.е. там будут "дырки" (пробелы).

Большое спасибо, буду разбираться!

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение27.07.2012, 08:21 


31/12/10
1555
[quote="vorvalm в сообщении #598555"]Вообще, для любой ПСВ разность $d=2p_{r-1}$ определяется из сравнения:
$nM_{r-2}\equiv\pm1(\mod p_r), (n,p_r)=1.$

Точнее, из системы соравнений:
$nM_{r-2}\equiv 1(\mod p_r)$
$nM_{r-2}\equiv-1(\mod p_{r-1})$

 Профиль  
                  
 
 Re: О проблеме Гольдбаха
Сообщение28.07.2012, 12:52 


23/02/12
3372
vorvalm в сообщении #599935 писал(а):

Точнее, из системы соравнений:
$nM_{r-2}\equiv 1(\mod p_r)$
$nM_{r-2}\equiv-1(\mod p_{r-1})$

Да,спасибо я построил нужные вычеты для m=30030 и определил положение ИС1, ИС2 и ИС. Об этом я написал сообщение в теме о треугольнике Гильбрайта.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 271 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 19  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group