Хотя инерционные силы не вполне компенсируют гравитационные силы в системах, свободно падающих в неоднородных или изменяющихся во времени гравитационных полях, мы все же можем ожидать их приближенной компенсации, если ограничимся рассмотрением столь малых областей пространства и времени, что поле в них не будет изменяться заметно. Следовательно, можно сформулировать принцип эквивалентности в виде утверждения, что
в каждой точке пространства-времени в произвольном гравитационном поле можно выбрать «локально-инерциальную систему координат», такую, что в достаточно малой окрестности рассматриваемой точки законы природы будут иметь такую же форму, как и в неускоренных декартовых системах координат. Имеется небольшая неясность в том, что мы подразумеваем под словами «такую же форму, как и в неускоренных декартовых системах координат». Чтобы избежать каких-либо возможных недоразумений в этом пункте, будем считать, что это означает форму, придаваемую законам природы специальной теорией относительности,, например форму уравнений (2.3.1), (2.7.6), (2.7.7.), (2.7.9) и (2.8.7). Возникает также вопрос, что мы называем «достаточно малой окрестностью». Грубо говоря, считается, что окрестность должна быть малой настолько, чтобы гравитационное поле можно было рассматривать в ней как постоянное. Однако по этому поводу невозможно сказать что-либо точное, пока мы не узнаем, как гравитационное поле выражается математически (см. окончание § 1 гл. 4).
Внимательный читатель, возможно, заметил некоторое сходство между принципом эквивалентности и аксиомой, которую Гаусс положил в основу неевклидовой геометрии. Принцип эквивалентности гласит, что в любой точке пространства-времени мы можем вводить локально-инерциальные системы координат, в которых справедливы законы специальной теории относительности... В то же время принцип эквивалентности говорит нам, что все эффекты гравитационного поля могут быть описаны с помощью производных
функций
которые определяют преобразование от «лабораторных>> координат
к локально-инерционным координатам
Кроме того, в гл. 1 было показано, что геометрически этим производным соответствуют величины
задаваемые выражением (1.1.7). В последующих параграфах данной главы мы увидим, что гравитационное поле описывается точно таким же образом.
Иногда различают «слабый принцип эквивалентности» и «сильный принцип эквивалентности». Сильный принцип эквивалентности — это данная выше формулировка, в которой под «законами природы» подразумевают
все законы природы. Слабый принцип отличается тем, что слова «законы природы» заменяются в нем словами «законы движения свободно падающих частиц». Слабый принцип — это не что иное, как другая формулировка наблюдаемого равенства гравитационной и инертной масс, в то время как сильный принцип представляет собой обобщение наблюдений влиянием гравитации на любые физические объекты.
...
Мы могли бы, однако, различать два варианта сильного принципа эквивалентности: «очень сильный принцип», применимый ко всем явлениям, и «среднесильный принцип», применимый ко всем явлениям, исключая саму гравитацию. Эксперимента Этвеша и Дикке явно недостаточно, чтобы точно сказать, одинаковым ли образом входит гравитационная энергия связи в инертную и гравитационную массы. Этот вопрос можно было бы решить, изучая орбитальное движение малого тела, движущегося вокруг массивного, которое само находится в состоянии свободного падения в гравитационном поле. Например, гравитационная энергия связи Земли составляет 8,4*10^-10 от ее полной массы, в то время как гравитационная энергия связи искусственного спутника составляет значительно меньшую долю его массы. Таким образом, если (рассмотрим крайний случай) энергия гравитационной связи дает (отрицательный) вклад только в инертную массу и не дает вообще никакого вклада в гравитационную массу, тогда отношение гравитационной массы спутника к его инертной массе было бы больше, чем соответствующее отношение для Земли на 8,4*10^-10. Земля находится в состоянии свободного падения, в котором гравитационное притяжение Солнца уравновешивается инерционной силой, возникающей из-за обращения Земли вокруг Солнца. Гравитационная и инерционная силы, действующие на спутник из-за наличия Солнца и обращения Земли, равны гравитационной и инерционной силам, действующим на Землю, умноженным на отношение гравитационной и инертной масс (если пренебречь расстоянием между спутником и центром массы Земли).
Таким образом, получается, что эти две силы не будут уравновешиваться для спутника, причем гравитационная сила будет больше инерционной силы на 8,4*10^-10. Ускорение из-за тяготения к Солнцу на околоземной орбите составляет 6*10^-4 от ускорения в поле тяжести Земли на ее поверхности. Отсюда следует, что если гравитационная энергия связи Земли полностью входит в ее инертную массу и не дает вообще никакого вклада в ее гравитационную массу, тогда искусственный спутник на проходящей близко у Земли орбите будет эффективно чувствовать притяжение к Солнцу, равное гравитационному притяжению к Земле, умноженному на коэффициент 5,4*10^-13. Этот крошечный эффект полностью маскируется «приливной» силой, возникающей из-за того, что расстояние между спутником и центром массы Земли велико, и нет надежды измерить этот эффект *). Это весьма огорчительно, поскольку такое измерение было бы явно самой строгой проверкой применимости принципа эквивалентности к гравитационным полям, из которого мы будем исходить в гл. 5 при получении уравнений поля Эйнштейна.