Это и есть обратимость и как видите можно доказать, что это свойство будет выполняться для любой модели.
Это Вам нравится называть обратимостью. А на самом деле - это достаточно простое свойство моделей подобного класса, причем малоинтересное. Называют его - обратимостью уравнений движения.
Как ни странно, насмотря на него - существуют
качественные различия в поведении какого-нибудь гармонического осциллятора и бильярда с шариками (обе модели - "обратимы", с Вашей точки зрения). Именно такие, которые
на самом деле связывают с "необратимостью", ростом энтропии и т.п. вещами.
(Оффтоп)
А не подскажете где эту задачку найти? myhand-то как я понимаю в курсе о чём речь, а я нет.
Боюсь, я тоже (был) не в курсе.
Если рассматривать точное решение, то оно будет обратимым и энтропия будет нулевой в любой момент времени.
Мне надоела пустопорожняя болтовня. Итак. Чему равна энтропия "точного решения". Формула, ссылка, доказательство постоянства.
Я же подчеркнул в цитате где у Вас ошибка. С какой стати Вы решили, что ныряние шарика в "портал времени" (который потом схлопнется и останется от него одно пустое место) является обратимым процессом?
С того, что этот процесс можно обратить. Мы можем обратить скорость шарика на выходе из горловины (в прошлом). Соответственно, он попадет в будущее и выскочит из воронки в точности со скоростью, обратной той, что в первом процессе.
Я же Вам несколько раз уже говорил: законы сохранения энергии и импульса должны соблюдаться
Должны - но не обязательно в привычном Вам виде, как на обычной плоскости Минковского.