Вы невнимательны. Это как раз одно из очень-очень редких исключений. И обратите внимание, что на всю книжку требуется ровно один рисунок этого гиперболоида.
А я и не говорю, что нужно два. Зато на ту же книжку нужны рисунки ещё эллипсоида, эллиптического параболоида... (далее все трёхмерные квадрики), и это только в главе по квадрикам. Нужны рисунки, поясняющие направления нормалей, ориентации площадей, нужны... да что я перечисляю? Откройте сами любой учебник по аналитической геометрии.
Притом желательно, чтобы этот рисунок был искажён: если пропорции будут правильными, то это может породить неправильное представление о свойствах поверхности.
Между прочим, полезно приводить два рисунка: искажённый, для объяснения качественных свойств поверхности, и более точный, чтобы дать количественное представление и намекнуть об искажениях. В частности, в современном мире: студент столкнётся с математическим пакетом, попытается нарисовать в нём график, и получит не то, что ожидает. Полезно объяснить ему на этот случай, "как всё на самом деле".
Кстати, та картинка с пирамидкой -- хорошая иллюстрация этому эффекту: разве не "видно", что прямая вовсе не перпендикулярна основанию?...
Мне "видно", что перпендикулярна, не знаю, как вам.
Во-вторых, на этом уровне следует считать сей факт очевидным.
Поумерьте высокомерие. Очевиден он для людей опытных, а для студентов сделать его очевидным - как раз
цель обучения.
картинка и понятие разные вещи, согласитесь
Тем не менее, никак не могу себе представить, чтобы картинка плоскости была хламом. Одна на весь учебник :-)