2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14 ... 60  След.
 
 Re: Что Вас потрясло в математике?
Сообщение31.05.2011, 08:19 
Аватара пользователя


22/07/08
1416
Предместья
Что меня потрясло?!
Геометрическая прогрессия, только не в виде пшеничных зёрен на шахматной доске, а в виде апорий Зенона.
Потом скатерть Улама, формула Эйлера для сумм делителей натуральных чисел.
Последнее потрясение - штрих-код треугольника.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение31.05.2011, 20:13 
Заслуженный участник


27/04/09
28128
Тот самый, который в какой-то из тем здесь обсуждался?

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение01.06.2011, 07:47 
Аватара пользователя


22/07/08
1416
Предместья
Тот самый...

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение04.06.2011, 01:57 


04/06/10
117
Читаю Ландау Э., "Введение в анализ". Про натуральные числа.

Теорема: $x+y>x$.
Доказательство: $x+y=x+y$ :)

Занимательно выглядит, если не прочесть перед этим предыдущих теорем (я читал).

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение04.06.2011, 17:47 


02/04/11
956
Вообще доказательство правильно проводить по индукции, используя определение порядка :)

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение09.06.2011, 14:00 


27/03/06
122
Маськва
Реально потрясли определители с перестановками и метод Крамера. Совершенно не укладывалось в голове, как до такого можно было додуматься. Потом были другие интересные фишки в ТФКП, топологии, функане. Но это - самое первое и яркое впечатление.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение09.06.2011, 14:49 


21/07/10
555
Профессор Снэйп в сообщении #449390 писал(а):
мат-ламер в сообщении #449378 писал(а):
У меня действительно в школе большое потрясение вызвал тот факт...

Меня в пятом классе потрясла тупость школьных учителей.

Учимся складывать отрицательные числа. Спрашивают, сколько будет $(-5) + (-2)$, я отвечаю $(-7)$. Мне говорят, неправильно, Севериус, правильный ответ $(-3)$. Как так? Начинаю спорить, затыкают рот, говорят: "Я лучше знаю".

После урока подхожу к учительнице с вопросом: "Ну как же так, что ж вы пургу-то несёте?" Крепко разобиженное тоном и моими непрекращающимися уверениями в собственной правоте, учительница восклицает: "Вот, я сейчас тебе докажу!". Достаёт из кармана калькулятор, набирает $(-5) + (-2)$. На экране высвечивается $(-7)$. Немая сцена. Смотрит, как Кантор, и не может поверить. Через минуту, не прерывая молчания, ухожу.


Не верю. Тупы, конечно, но не настолько же. Подобные "задачи" решают чуть ли не полгода в пятом классе (или когда там появляются отр. числа?) - любая училка научится:)

-- Чт июн 09, 2011 16:12:26 --

Профессор Снэйп в сообщении #449312 писал(а):
Да ну что к чему мотивация?.. Купил я, допустим, в ювелирном магазине фарфоровый скребок, инкрустированный алмазными крошками. Красивая вещь, глаз радует! Поставил на полку, любуюсь. А тут приходит какой-то зануда и начинает мне объяснять, что им можно ещё и огород вскапывать. Ну при чём здесь огород? Красивая вещь в оправдании не нуждается!!!

Если задали набор аксиом и видим, что интересно получается, чего ещё надо?


Нет мотивации - нет математики. Разве что символьная мат. лингвистика.
Вообще-то обычно сначала имеется содержательная модель, а потом уже попытки эту модель описать аксиоматически. Практически единственное исключение - геом. Лобачевского, где модель появилась через 50 лет после аксиом. Но и там была железная мотивация модификации 5-го постулата.

В случае с натуральными числами последовательность была, вероятно, следующей:

cчет предметов --> сложение и "вычитание", ассоциативность и коммутативность сложения;

счет предметов в узлах сетки (напр, деревьев в саду) --> умножение, его коммутативность и дистрибутивность со сложением;

счет предметов в узлах простр. сетки --> ассоциативность умножения;

задачи дележа --> дроби;

задачи бух.учета --> отрицательные числа, их сложение/"вычитание", умножение отрицательного на положительное;

обобщение всего выжеизложенного --> аксиомы кольца --> полное определение умножения целых чисел или

обобщение --> ориентированная площадь --> умножение или

обобщение --> еще какие-то мат. соображения --> умножение.

Итого: вся арифметика рациональных чисел, кроме умножения двух отрицательных величин происходит из житейских нематематических соображений. Умножение двух отрицательных - из естественного желания сохранить законы арифметики положительных чисел на всем Q.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение12.06.2011, 19:28 


02/04/11
956
Из последнего: диаграммы, конусы и пределы. Глубина идей, стоящих за ними, просто поражает 8-)

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение12.06.2011, 19:32 
Заслуженный участник
Аватара пользователя


30/01/09
7134
Kallikanzarid в сообщении #457195 писал(а):
Из последнего: диаграммы, конусы и пределы. Глубина идей, стоящих за ними, просто поражает 8-)

А можно по-подробнее? Это из топологии?

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение12.06.2011, 22:52 


02/04/11
956
мат-ламер в сообщении #457198 писал(а):
А можно по-подробнее? Это из топологии?

Это из теории категорий. Диаграммой, интуитивно, называют совокупность объектов и стрелок между ними (частный случай - коммутативная диаграмма, где между любыми двумя объектами - не больше одной стрелки). Конусом диаграммы называют объект и по одному морфизму из него в каждый объект диаграммы (причем из него в каждый объект диаграммы можно попасть лишь одним способом в смысле коммутативности соответствующих треугольников). Можно определить морфизмы между конусами как морфизмы между объектами-"вершинами" конусов, таким образом получаем категорию конусов фиксированной диаграммы. Пределом называем терминальный объект в этой категории, т.е. такой конус, что любой другой конус выражается факторизуется через него, это такой "наилучший пункт наблюдения" за диаграммой.

Двойственные понятия (коконусы и копределы), разумеется, столь же полезны

Пределы интересны тем, что возникают в очень многих разделах математики постоянно.
Примеры:
1) Произведения и копроизведения возникают во всех категориях, исследуемых в топологии и абстрактной алгебре, это конусы и коконусы диаграмм типа $\bullet \ \bullet$.
2) Инициальные и терминальные морфизмы - это коконусы и конусы диаграмм типа $\bullet$, с ними связано понятие универсального свойства, связанное, например, с тензорной алгеброй, алгеброй грассмана, задачи распространения (точнее, ее частный случай, эквивалентный задаче о ретракции) и поднятия в топологии.
3) Уравнитель - предел диаграммы с двумя параллельными стрелками, его частный случай - ядро.
4) Декартов квадрат - предел диаграммы типа $\bullet \rightarrow \bullet \leftarrow \bullet$; если я не ошибаюсь, послойное произведение локально тривиального расслоения будет его примером, но я это не проверял оно выглядит так, как должно выглядеть произведение в категории морфизмов в фиксированный объект, но я не стану загадывать. Примером двойственного ему кодекартова квадрата будет более доступное моему воображению приклеивание топологических пространств.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение13.06.2011, 20:22 
Заслуженный участник
Аватара пользователя


30/01/09
7134
Kallikanzarid. Спасибо. До таких глубин ещё дорасти надо (по крайней мере, мне). А что, тут действительно глубина идей, или это просто новый язык для удобного обозначения известных понятий?

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение13.06.2011, 21:51 


02/04/11
956
мат-ламер
Это точно новый (появился в 1942-м) язык (теория первого порядка), но одно из его основных преимуществ заключается в том, что в нем всплывают на поверхность идеи и легко формулируются абстракции, которые ранее были недоступны или малодоступны: двойственность, сопряжение, универсальное свойство, естественное отображение. Кроме того, в теории категорий на первый план заслуженно выходят морфизмы (в противоположность объектам) и возникает, в частности, понятие функтора, на котором основана вся современная алгебраическая топология.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение14.06.2011, 10:58 


25/08/05
645
Україна
Kallikanzarid в сообщении #457710 писал(а):
мат-ламер
Это точно новый (появился в 1942-м) язык (теория первого порядка), но одно из его основных преимуществ заключается в том, что в нем всплывают на поверхность идеи и легко формулируются абстракции, которые ранее были недоступны или малодоступны: двойственность, сопряжение, универсальное свойство, естественное отображение. Кроме того, в теории категорий на первый план заслуженно выходят морфизмы (в противоположность объектам) и возникает, в частности, понятие функтора, на котором основана вся современная алгебраическая топология.


Да, после знакомства с етими вещами начинаешь понимать что нас то неправильно учили :) Для меня минипотрясением было то, что таким функториальным способом (например комлекс Кошуля и тд.) свойства алгебраических структур описываются более естесственно.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение16.06.2011, 17:10 


17/03/08
18
ИжГТУ
Определение принадлежности элемента множеству А.Френкеля и с аристотелевской логикой вся математика после.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение10.07.2011, 11:23 


25/06/11
47
Поразило то, что можно любую функцию представить в виде суммы синусов и косинусов (преобразование фурье)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 889 ]  На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14 ... 60  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group