А зачем Вы в этой формализованной модели ищите необратимость?
Под приписываемым свойством имелась ввиду эргодичность, а может еще и перемешивание.
По поводу математики...
Давайте на конкретике. Мы берем некую механическую модель реальной системы, когда мы ее формулируем, мы ни о какой эргодичности не говорим, мы в построениях ничего специального не вводим. И когда мы все это проделали, мы вдруг заявляем эта модель будет обладать свойством эргодичности, а с какой радости?
-- Пн янв 31, 2011 19:43:32 -- Имеем скорость с точностью и координату с точностью .
Вы рассматриваете эволюцию не точки, а некой малой окрестности точки, в принципе так и подходят в статистической физики, объясняя на ее основе наблюдаемые явления. Но этот подход предполагает некое свойство механической системы – эргодичность, без этого свойства результат может быть не верным. И разговор идет не о том верно ли статистическая физика описывает мир, речь идет об обоснованиях статистической физики. И проблема это, насколько я знаю, до конца не решена (читай просто не решена).
-- Пн янв 31, 2011 20:04:26 --Зависит от того, какое фазовое пространство и как рассматривать. Может быть, и разным. Атомы - это физическое описание, а не модельное. Области вы вообще никак не дефинировали.
Да самое обычное фазовое пространство, и рассматриваю я его в самом простом смысле как в подходе Гиббса. Атомы ? Хоть это и непринципиально пусть будут точечные массы.
Если мы рассматриваем эти самые точечные массы расположенные в некоторой малой окрестности узлов решетки, то в фазовом пространстве этому соответствует некая область, если теперь поменять раскладку этих точечных масс по узлам решетки то получим другую область в фазовом пространстве (не пересекающуюся с первой) всего таких областей будет N! деленное на число поворотов, переводящих кристалл в себя. Т.е. число областей, на которые можно разбить энергетическую поверхность пропорционально эн факториал. Так как области равноправны то относительный объем такой области фазового пространства исчезающее мал при больших эн.