2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 13  След.
 
 Что такое дифференциал?
Сообщение11.10.2010, 22:01 
Заслуженный участник


13/12/05
4655
Переношу сюда обсуждения смысла значка $d$ в формуле $a=\dfrac{dv}{dt}$.
ewert в сообщении #361156 писал(а):
Padawan в сообщении #361153 писал(а):
А в одномерном случае дифференциал это тоже число.

Ни боже ж мой. Это линейная функция, а не число.


Как Вы решите такую задачу: "Заменяя приращение функции дифференциалом, вычислите $\sqrt{1.001}$"? Или такую: "Чему равно $dx^3$, если $x=1$, $dx=2$ ? Может быть Вы считаете, что эти задачи не имеют смысла или некорректно сформулированы?

-- Вт окт 12, 2010 00:21:34 --

Хотя, всё это слова. Дифференциал, значение дифференциала. Функция, значение функции. Какая разница, нельзя весь математический язык полностью формализовать. Потому что как только что-то формализуешь, так сразу появляются ограничения в выразительности языка.

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение11.10.2010, 22:33 
Заслуженный участник
Аватара пользователя


07/01/10
2015
topic34634

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение11.10.2010, 22:35 
Заслуженный участник


13/12/05
4655
Да, так уже оскомину набило. Можно тему закрывать.

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение11.10.2010, 23:32 
Заслуженный участник


11/05/08
32166

(Оффтоп)

Padawan в сообщении #361162 писал(а):
Как Вы решите такую задачу: "Заменяя приращение функции дифференциалом,

Очень просто: Вы меня спровоцировали на неадекватный (в этом месте) ответ, вот и всё решение.

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение12.10.2010, 12:30 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Нас учили, что дифференциал --- это "линейная часть приращения функции". То есть если $f : \mathbb{R}^n \to \mathbb{R}^m$ --- дифференцируемая функция, то при всех $x_0 \in \mathbb{R}^n$ $df(x_0)$ --- такое линейное отображение из $\mathbb{R}^n$ в $\mathbb{R}^m$, что $\| f(x) - df(x_0)(x-x_0) \| = o(\| x - x_0 \|)$ при $x \to x_0$. А производная --- матрица этого отображения :-)

У меня лично такое ощущение, что понятие "дифференциал" надо счесть устаревшим и не использовать его в курсах матанализа.

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение12.10.2010, 12:41 
Экс-модератор


17/06/06
5004
Профессор Снэйп в сообщении #361266 писал(а):
У меня лично такое ощущение, что понятие "дифференциал" надо счесть устаревшим и не использовать его в курсах матанализа.
За. Только если чуть-чуть высунуть голову за математический факультет, то сразу выяснится, что все, кроме математиков, этим понятием свободно пользуются, а еще непрерывно перемежают буквы $df$, $\partial f$ и $\delta f$, которые какбэ символизируют. :shock: :oops:

Как бы объяснить математикам, что они символизируют?

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение12.10.2010, 12:54 
Заслуженный участник


11/05/08
32166
Профессор Снэйп в сообщении #361266 писал(а):
$df(x_0)$ --- такое линейное отображение из $\mathbb{R}^n$ в $\mathbb{R}^m$, что $\| f(x) - df(x_0)(x-x_0) \| = o(\| x - x_0 \|)$ при $x \to x_0$. А производная --- матрица этого отображения :-)

$df(x_0)(x-x_0)$ -- формально неверная запись. Правильно: $df(x_0,x-x_0)=f'(x_0)(x-x_0)$, независимо от размерностей. И называть производную "матрицей отображения" -- тоже нехорошо. На самом деле производная -- это само отображение, а её матрица составляется из "частных производных" (одномерный случай выделяется лишь тем, что есть естественный изоморфизм).

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение12.10.2010, 14:24 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ewert в сообщении #361278 писал(а):
$df(x_0)(x-x_0)$ -- формально неверная запись. Правильно: $df(x_0,x-x_0)\ldots$

Ну, это смотря в какой системе обозначений. Если $f$ - функция двух аргументов, то её можно воспринимать как функцию первого аргумента, принимающую значение во множестве функций второго аргумента, и тогда положить $f(x)(y)=[f(x)](y)\equiv f(x,y).$ Несколько непривычно, но и всё, криминала нет.

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение12.10.2010, 17:40 
Заслуженный участник
Аватара пользователя


07/01/10
2015

(Оффтоп)

Munin в сообщении #361299 писал(а):
то её можно воспринимать как функцию первого аргумента, принимающую значение во множестве функций второго аргумента

каррирование :wink:

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение12.10.2010, 18:06 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)

Оно самое.

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение13.10.2010, 15:25 
Заблокирован


12/08/09

1284
Самодуровка
Padawan в сообщении #361162 писал(а):
Переношу сюда обсуждения смысла значка $d$ в формуле $a=\dfrac{dv}{dt}$.

$\Delta x = x_1 - x_2 , \Delta x \to 0, \Delta x = dx$

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение13.10.2010, 15:36 
Экс-модератор


17/06/06
5004
master в сообщении #361670 писал(а):
$\Delta x = x_1 - x_2 , \Delta x \to 0, \Delta x = dx$
Поясните. Вот, например, $x_1=1$, $x_2=2$. Тогда $\Delta x=x_1-x_2=-1\to0$?? А вот это "$\Delta x=dx$" ... Зачем два разных обозначения тогда, если они равны? Или это снова какое-то "1=2 при достаточно больших значениях 1"? :roll:

Вот когда называют дифференциал оператором - это мне понятно. И тогда понятие дифференциала и производной для функций из $\mathbb{R}$ в $\mathbb{R}$ отождествляются каноническим изоморфизмом $\mathbb{R}\leftrightarrow\mathbb{R}^*$, то есть тогда это понятие абсолютно лишнее.

Но как всяким механикам и прочем физикам удается понимать это на таком уровне, как master вот сейчас сказал? Как научить математиков тому же самому, и стоит ли оно того?

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение13.10.2010, 15:37 
Заслуженный участник


13/12/05
4655
master в сообщении #361670 писал(а):
$\Delta x = dx$

Да. Но это только для независимой переменной :-) А то, что $dx\to 0$ тут не причем.

-- Ср окт 13, 2010 17:41:02 --

AD
$df\operatorname{=}\limits^{\text{опр}}f'\Delta x$

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение13.10.2010, 20:57 
Заслуженный участник


11/05/08
32166
AD в сообщении #361673 писал(а):
Вот когда называют дифференциал оператором - это мне понятно.

А мне -- нет. Поскольку это просто неверно. Дифференциал -- это всего лишь бесконечно маленькое приращение. Это все знают. Даже некоторые математики. И даже многие студенты.

 Профиль  
                  
 
 Re: Что такое дифференциал?
Сообщение13.10.2010, 21:20 
Заслуженный участник
Аватара пользователя


07/01/10
2015
А что строго значат буковки $d$ в дифурах типа $\tg x \,dx-\ctg x\, dy=0$ (дифур из Эльсгольц "Дифуры и вар. исчисление")

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 182 ]  На страницу 1, 2, 3, 4, 5 ... 13  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group