2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 
Сообщение12.04.2009, 00:00 
Заслуженный участник
Аватара пользователя


23/07/05
18039
Москва
Гаджимурат в сообщении #204047 писал(а):
как делать правильно "вставку",что-бы и формулы сносились


Копирование формул зависит от используемого браузера. Firefox копирует, а IE - нет. Нажимайте кнопку Изображение, она полностью код всех формул копирует. Откройте две окна браузера (или две вкладки, если он работает с вкладками), в одном пишите сообщение, а другое используйте для копирования.

 Профиль  
                  
 
 
Сообщение12.04.2009, 05:36 


22/02/09

285
Свердловская обл.
sceptic в сообщении #204082 писал(а):
Мы разве уже на "ты"?

Извините,обычно я обращаюсь на "ВЫ", т.как не знаю с кем имею честь общаться. И в последнем послании 2 раза описался автоматически. Считайте это ошибкой,а не моим воспитанием,хотя я и прожил (и живу) всю свою сознательную жизнь в деревне и мое общение далеко не светское.

 Профиль  
                  
 
 
Сообщение12.04.2009, 13:57 


22/02/09

285
Свердловская обл.
sceptic в сообщении #203685 писал(а):
Не забудьте, однако, в дальнейшем рассмотреть случай, когда $x+y$ $\neq$ $c^3$ ни для какого целого$c$ (или доказать, что этот случай невозможен). То же

Да,можно.

 Профиль  
                  
 
 
Сообщение12.04.2009, 17:49 
Заблокирован


14/02/09

1545
город Курганинск
Гаджимурат в сообщении #204278 писал(а):
sceptic в сообщении #203685 писал(а):
Не забудьте, однако, в дальнейшем рассмотреть случай, когда $x+y \ne c^3$ ни для какого целого $c$ (или доказать, что этот случай невозможен). То же

Да,можно.

Невозможное возможно. Пример $2+6=2^3$

 Профиль  
                  
 
 Виктор Ширшов, вы здесь лишний
Сообщение12.04.2009, 19:14 


24/05/05
278
МО
Не засоряйте тему.

 Профиль  
                  
 
 
Сообщение12.04.2009, 19:32 
Заблокирован


14/02/09

1545
город Курганинск
Виктор Ширшов писал(а):
Гаджимурат в сообщении #204278 писал(а):
sceptic в сообщении #203685 писал(а):
Не забудьте, однако, в дальнейшем рассмотреть случай, когда $x+y \ne c^3$ ни для какого целого $c$ (или доказать, что этот случай невозможен). То же

Да,можно.

Невозможное возможно. Пример $3+5=2^3$

Прошу прощения за очередное вмешательство. Опять не туда нажал, редактируя свой пример

 Профиль  
                  
 
 2 этап доказательства ВТФ.
Сообщение03.05.2009, 10:01 


22/02/09

285
Свердловская обл.
Гаджимурат в сообщении #192696 писал(а):
Есть надежда завершить доказательство ВТФ на элементарном уровне.

На первом этапе доказательства ВТФ мы получили основные ур-ния,которые описывают структуру и взаимную связь $xyz$.
Напомним( приняли условие,что $\frac{x}{N^2}$) :
1. $x=abcm+\frac{b^N}N$, здесь $b=N^2b_1$ и $abcm=x_1$.
2. $y=abcm+a^N$.
3. $z=abcm+a^N+\frac{b^N}N$.
4. $c^N=2abcm+a^N+\frac{b^N}N$.
5. $z=cd$.
6. $c^{N-1}=d+abm$.
7. $d^N=y^{N-1}-xy^{N-2}+x^2y^{N-3}+....+x^{N-1}$.
Знаем,что $a^{N-1}-1$ и $c^{N-1}-1$ делятся на$N$ и $(a-k)/N$. $k=?$.
Докажем,что для любых степеней $k=1$.
Из ур-ния (6) следует: $(d-1)/N$ . В ур-нии (7) $y$заменим на $y^{N-1}=(x_1+n)^{N-1}$ (здесь напомним,что $n=a^N$), так-же поступим и с $y^{N-2}$, а $x=x_1+n_1$ и, отбросим все члены,содержащие$n_1,n_1^2,..,x^2,x^3,..,x_1^2,x_1^3,..$, имеем:
$d^N-n^{N-1}-(N-1)x_1n^{N-2}+x_1n^{N-2}$ -делится на $N^4$, а так как $(x_1)/N^2$ и $d^N-n^{N-1}+2x_1n^{N-2}$ -делится на $N^3$.
$d^N-n^{N-1}$ разделим на $d-a^{N-1}$ и произведя необходимые преобразования,отбросив все члены,которые делятся на $N^3$ и более,а $2x_1n^{N-2}=2bcma^{N(N-2)+1}$ и зная,что $a^{N(N-2)+1}-1$ делится на $N$,т.как $ N(N-2)+1=(N-1)^2$, можем записать: $N(d-a^{N-1})+2bcm$ делится на $N^3$ и,разделив на $N$, имеем:$d-a^{N-1}+2cmNb_1$ (8) -делится на $N^2$ (здесь принято $b=N^2b_1$). Из (6) имеем: $d-c^{N-1}$ делится на $N^2$ (9),поэтому из (8) вычтем (9), имеем: $c^{N-1}-a^{N-1}+2cmNb_1$ делится на$N^2$ (10). Примем: $c-a=Nt$, поэтому из (10) следует :$(N-1)Nt+2cmNb_1$ делится на $N^2$ и $2cmN^2b_1-N^2t$ делится на $N^3$ (11). В Ур-нии (4) $c^N$ заменим на $(a+Nt)^N$ и, отбросив все члены,которые явно делятся на $N^3$ и более, имеем: $2acmN^2b_1-N^2ta^{N-1}$ делится на $N^3$ и $a^{N-1}-1$ делится на $N$,тогда и $2acmN^2b_1-N^2t$ делится на $N^3$ (12). Из (12) вычтем (11) , имеем: $2acmN^2b_1-2cmN^2b_1$ и $2cmN^2b_1(a-1)$ делится на $N^3$. Отсюда и $a-1$ делится на $N$.
Мы доказали : решение ур-ния Ф. в целых числах возможно при условии, что $a-1, m-1, c-1 ,d-1$ делятся на $N$ (для всех простых степеней $N$) т.есть мы доказали $k=1$. Второй этап доказательства ВТФ закончен.

 Профиль  
                  
 
 
Сообщение03.05.2009, 11:16 
Заблокирован


14/02/09

1545
город Курганинск
Гаджимурат в сообщении #210393 писал(а):
Второй этап доказательства ВТФ закончен.

Специалисты молчат, видимо, переваривают.
Наверное, и мне следовало поступить так же, а то я представил доказательство ВТФ уже в пережёванном виде.

 Профиль  
                  
 
 
Сообщение03.05.2009, 11:17 


22/02/09

285
Свердловская обл.
Мат в сообщении #210397 писал(а):
Зачем считать колбочки, да палочки$5+5+5+5+5$ - не легче ли написать$5^2$ ?

Извините,не понял. О чем идет речь. Я пытаюсь доказать,что ур-ние вида $x^N+y^N=z^N$ не имеет решение в целых числах.Для этого принято:пусть ур-ние имеет решение,тогда определяем структуру чисел $xyz$. Наша задачи найти "ошибку",например :приняли $c-a$ делится только на $N$ и не более, а в ходе анализа получим $c-a$ делится на $N^2$ и более.Тогда,если примем , что $c-a$ делится на $N^2$ ,а в ходе нового анализа,с новым принятым условием,получим $c-a$ делится на $N^3$ и более (дикая бесконечность). Делаем соответствующие выводы.Доказательство-найди "ошибку" при анализе ур-ний не совершая математических при этом ошибок,не нарушая законов элементарной математики-вот главная задача,выбравная мною, при доказательстве ВТФ. Все так просто и ясно.А пути решения могут быть разные.Пример: найдено решение для $N=2$ и я его получил, но другим методом. У меня решение для $N=2$ есть частный случай общего решения. И что Вас не устраивает.Прошу Вас найти в моем анализе нарушение основ математики (элементарной).Найдете-огромная Вам благодарность.Для этого и есть форум.Если кто-то и где-то доказал элементарным способом ВТФ-отлично,стоит посмотреть.

 Профиль  
                  
 
 Не гоните! Еще 1-й этап не сдали.
Сообщение04.05.2009, 13:11 


24/05/05
278
МО
Гаджимурат писал(а):
Напомним( приняли условие,что $\frac{x}{N^2}$) :

Что это означает? Если "$x$ делится на $N^2$", то пишите, как принято: $N^2|x}$ (bot вам уже говорил об этом). Вам что, трудно палочки ставить? Если же эта запись означает что-то другое, то объясните - что.
Гаджимурат писал(а):
1. $x=abcm+\frac{b^N}N$, здесь $b=N^2b_1$ и $abcm=x_1$.
2. $y=abcm+a^N$.
3. $z=abcm+a^N+\frac{b^N}N$.
4. $c^N=2abcm+a^N+\frac{b^N}N$.
5. $z=cd$.
6. $c^{N-1}=d+abm$.
7. $d^N=y^{N-1}-xy^{N-2}+x^2y^{N-3}+....+x^{N-1}$.
Знаем,что $a^{N-1}-1$ и $c^{N-1}-1$ делятся на$N$ и $(a-k)/N$. $k=?$.
Докажем,что для любых степеней $k=1$.
Из ур-ния (6) следует: $(d-1)/N$ . В ур-нии (7) $y$заменим на $y^{N-1}=(x_1+n)^{N-1}$ (здесь напомним,что $n=a^N$), так-же поступим и с $y^{N-2}$, а $x=x_1+n_1$ и, отбросим все члены,содержащие$n_1,n_1^2,..,x^2,x^3,..,x_1^2,x_1^3,..$, имеем:
$d^N-n^{N-1}-(N-1)x_1n^{N-2}+x_1n^{N-2}$ -делится на $N^4$, а так как $(x_1)/N^2$ и $d^N-n^{N-1}+2x_1n^{N-2}$ -делится на $N^3$.
$d^N-n^{N-1}$ разделим на $d-a^{N-1}$ и произведя необходимые преобразования,отбросив все члены,которые делятся на $N^3$ и более,а $2x_1n^{N-2}=2bcma^{N(N-2)+1}$ и зная,что $a^{N(N-2)+1}-1$ делится на $N$,т.как $ N(N-2)+1=(N-1)^2$, можем записать: $N(d-a^{N-1})+2bcm$ делится на $N^3$ и,разделив на $N$, имеем:$d-a^{N-1}+2cmNb_1$ (8) -делится на $N^2$ (здесь принято $b=N^2b_1$). Из (6) имеем: $d-c^{N-1}$ делится на $N^2$ (9),поэтому из (8) вычтем (9), имеем: $c^{N-1}-a^{N-1}+2cmNb_1$ делится на$N^2$ (10). Примем: $c-a=Nt$, поэтому из (10) следует :$(N-1)Nt+2cmNb_1$ делится на $N^2$ и $2cmN^2b_1-N^2t$ делится на $N^3$ (11). В Ур-нии (4) $c^N$ заменим на $(a+Nt)^N$ и, отбросив все члены,которые явно делятся на $N^3$ и более, имеем: $2acmN^2b_1-N^2ta^{N-1}$ делится на $N^3$ и $a^{N-1}-1$ делится на $N$,тогда и $2acmN^2b_1-N^2t$ делится на $N^3$ (12). Из (12) вычтем (11) , имеем: $2acmN^2b_1-2cmN^2b_1$ и $2cmN^2b_1(a-1)$ делится на $N^3$. Отсюда и $a-1$ делится на $N$.
Мы доказали : решение ур-ния Ф. в целых числах возможно при условии, что $a-1, m-1, c-1 ,d-1$ делятся на $N$ (для всех простых степеней $N$) т.есть мы доказали $k=1$. Второй этап доказательства ВТФ закончен.


Гаджимурат, стоп! Мы же, кажется, договорились, что вы ограничитесь (пусть, пока) случаем $N=3$. Вот и излагайте свои вычисления для $N=3$. И не забудьте в оформлении учесть мои замечания. Я считаю, что вы еще не закончили 1-й этап - я увидел лишь некие начальные определения и начало рассмотрения некоторого плохо обоснованного случая ($x+y=c^3, n_1=b^3, 3n=a^3$) ВТФ при $N=3$. Закончите, пожалуйста, рассмотрение этого случая - затем займемся и другими случаями, пропущенными (осознанно или неосознанно - не знаю) вами.

 Профиль  
                  
 
 
Сообщение04.05.2009, 16:20 


22/02/09

285
Свердловская обл.
sceptic в сообщении #210830 писал(а):
Что это означает? Если "$x$ делится на$N^$ ",

Это значит,что $x=N^2K$ или,что тоже $b=N^2b_1$ .Можно и $x|N^2$, но почему просите писать $N^2|x$ ?А ,если требуется показать когда определенное количество членов делится ,к примеру,на $N^3$ ?
Я не занимаюсь решением Ф. для $N=3$ ,4,5...Я решаю задачу для любого простого числа N >3. Я показал на N=3 только свой метод доказательства и не преследовал больше ни каких целей, хотя,извините ,еще есть одна цель и о ней пока не догадались.
А доказать требуется,что если нет решений Ф. для простых степеней
N,нет и решения ВТФ. На 3 этапе я покажу,что нет решения ВТФ ,
когда $z-y=\frac{b^N}N$ ,при этом уже не требуется доказывать случай $z-x=\frac{a^N}N$,останется $x+y=\frac{c^N}N$.
Случай $z-y=b^N$, $z-x=a^N$,$x+y=c^N$ кажется доказан и я имею свое доказательство.Придет и его черед.

 Профиль  
                  
 
 
Сообщение04.05.2009, 16:24 


03/10/06
826
Если $N^2$ является делителем (делит) $x$, то принято писать так, как показал sceptic. Вас просят для показателя $3$ привести доказательство, вам это сложно что ли?

 Профиль  
                  
 
 
Сообщение04.05.2009, 16:51 


22/02/09

285
Свердловская обл.
yk2ru в сообщении #210879 писал(а):
привести доказательство, вам это сложно что ли?

Да,сложно,сложнее чем для N>3.Почему? Я дал развернутый ответ и все куда-то исчезло,отправил из предварительного просмотра.Бывает.

 Профиль  
                  
 
 Не надо 3-го этапа. Ограничтесь пока N=3.
Сообщение04.05.2009, 17:00 


24/05/05
278
МО
Гаджимурат писал(а):
sceptic в сообщении #210830 писал(а):
Что это означает? Если "$x$ делится на$N^$ ",

Это значит,что $x=N^2K$ или,что тоже $b=N^2b_1$ .Можно и $x|N^2$, но почему просите писать $N^2|x$ ?

Потому, что - это стандартное обозначение для делимости. Не надо изобретать свои обозначения там, где уже все пользуются стандартными.

Гаджимурат писал(а):
Я не занимаюсь решением Ф. для $N=3$ ,4,5...Я решаю задачу для любого простого числа N >3. Я показал на N=3 только свой метод доказательства и не преследовал больше ни каких целей, хотя,извините ,еще есть одна цель и о ней пока не догадались.

Пока еще не показали. Мы лишь топчемся на месте. Я и прошу - изложите свое доказательство ТФ для $N=3$ полностью. Почему $N=3$? Отвечаю:
а) все ваши выкладки и рассуждения становятся более простыми и прозрачными для понимания читателю;
б) ошибки, буде они вылезут (а они вылезут! - будьте уверенны), легче будет вам показать и объяснить. Я уже неоднократно с этим сталкивался - часто автору трудно понять свою ошибку при рассмотрении в общем виде его теории, доказательства, etc (почему это происходит - отдельная тема, не будем ее касаться), но стоит рассмотреть удачно подобранный частный случай (теории, доказательства, etc) - и автор сам легко видит, где он ошибся. Для ВТФ таким "удачным" частным случаем является случай $N=3$.
Вот когда доказательство для $N=3$ будет принято, тогда и будем рассматривать общий случай.

 Профиль  
                  
 
 
Сообщение04.05.2009, 17:12 
Заблокирован


14/02/09

1545
город Курганинск
Гаджимурат в сообщении #210893 писал(а):
Да,сложно,сложнее чем для N>3.Почему? Я дал развернутый ответ и все куда-то исчезло,отправил из предварительного просмотра.Бывает.

У Вас ответ исчез, а у меня тема "Сила тяжести". Бывает

Добавлено спустя 9 минут 47 секунд:

Кстати, и темы Николая Лошкарёва я не вижу.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 102 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group