2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 14  След.
 
 К вопросу о фундаментальной длине...
Сообщение21.04.2006, 06:19 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Добрый день!Я занимаюсь теоринй фундаментальной длинв и получил некоторые результаты,которые хотел бы тут предложить на обсуждение...
Итак,исходя из некоторых простых физических соображений,я получил релятивисткий лагранжиан для теории с фундаментальной длиной,потом из него получил нерелятивисткое приближение и решил рассчитать уравнения движения свободной частицы для одномерного случапя.После решеия уравнения Лагранжа-Эйлела для этого случая я пршёл к следующему уравнению::
$$\ ((dx/dt)^2)*x^4 -V^2*((x^2-L^2)^2+(TL)^2))=0$$
Здесь t-естественно,время,x-координата,и из этого уравнения надо найти уравнение мировой линии для движения свободной частицы
Решнние этого уравнения можно выразить неявным способом в виде следующего интеграла:
$$\ +/-V*t = \int\(((x^2-L^2)^2+(TL)^2)^-1/2)*x^2}dx+C$$

Интересно,что когда фундаментальная длина L=0,то этот интеграл переходит в классическое уравнение: уравнение
$$\ +/-V*t = x+C $$
Что касается интеграла,то он действительно выражается через эллиптические функции.
С помошью подстановки $$\  x=a*sn(u,k)где,$$\   a^2=L^2-TL,k^2=L^2-TL/L^2-TL
($$\  sn(u,k)-эллиптический синус Якоби(эта функция периодическая,но с простыми полюсами в комплексной области)) я получил следующее выражение:

$$\ +/-V*t = b*(1-E/K)*u-b*zn(u,k)+C $$,где zn(u,k)-эллиптическая дзета-функция Якоби(эта функция периодическая),E,K-некоторые константы,в конечном счёте определяемые с помощью k,а $$\ b^2=L^2+TL$$
Итак,в заданный момент времени t и при заданной скорости V,начальных условиях C свободная частица может находится во множестве точек с координатами $$\ x=a*sn(u_0,k),где
$$\ u_0-корни последнего уравнения,причём они могут быть и комплексными,координата же x-всегда вещественна в силу свойств эллиптического синуса Якоби...
Вопрос-не напоминает ли это решение картину квантовой механики?..

Приведите $\LaTeX$ код к корректному виду. В соответствии с правилами. //Администратор cepesh.

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение21.04.2006, 19:23 
Заблокирован
Аватара пользователя


18/01/06

3241
ЧЕРНАЯ ДЫРА МУМУ-ШВАРЦНЕГЕРА
:evil: Надо проквантовать и проверить будет ли выполнено условие микролокальности
Ефимова-обобщенная причинность для S-матрицы.

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение21.04.2006, 19:51 
Экс-модератор
Аватара пользователя


30/11/05
1275
PSP писал(а):
Вопрос-не напоминает ли это решение картину квантовой механики?..

А чем именно оно должно напоминать? Вообще очень сложно что-либо сказать определенное. Нужны подробности относительно того что это за фундаментальная длина... нужен анализ решений для различных потенциалов (не только для U=0). Пока ничего удивительного не вижу.

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение21.04.2006, 20:34 
Заблокирован
Аватара пользователя


18/01/06

3241
ЧЕРНАЯ ДЫРА МУМУ-ШВАРЦНЕГЕРА
Аурелиано Буэндиа писал(а):
PSP писал(а):
Вопрос-не напоминает ли это решение картину квантовой механики?..

А чем именно оно должно напоминать? Вообще очень сложно что-либо сказать определенное. Нужны подробности относительно того что это за фундаментальная длина... нужен анализ решений для различных потенциалов (не только для U=0). Пока ничего удивительного не вижу.

:evil: Это все уже делал Ефимов в общем случае,даже для неперенормируемых взаимодействий, в рамках теории нелокальных обобщенных функций. У него есть две монографии на эту тему. Все это велосипет который к тому же еще и не ездит.

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение21.04.2006, 22:11 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Котофеич писал(а):
Аурелиано Буэндиа писал(а):
PSP писал(а):
Вопрос-не напоминает ли это решение картину квантовой механики?..

А чем именно оно должно напоминать? Вообще очень сложно что-либо сказать определенное. Нужны подробности относительно того что это за фундаментальная длина... нужен анализ решений для различных потенциалов (не только для U=0). Пока ничего удивительного не вижу.

:evil: Это все уже делал Ефимов в общем случае,даже для неперенормируемых взаимодействий, в рамках теории нелокальных обобщенных функций. У него есть две монографии на эту тему. Все это велосипет который к тому же еще и не ездит.

Будьте любезны,не могли бы Вы дать ссылки на эти монографии.

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение21.04.2006, 22:12 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Котофеич писал(а):
:evil: Надо проквантовать и проверить будет ли выполнено условие микролокальности
Ефимова-обобщенная причинность для S-матрицы.

Более поподробнее про этот путь не могли бы рассказать?Будьте любезны.. :)

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение22.04.2006, 02:34 
Заблокирован
Аватара пользователя


18/01/06

3241
ЧЕРНАЯ ДЫРА МУМУ-ШВАРЦНЕГЕРА
PSP писал(а):
Котофеич писал(а):
:evil: Надо проквантовать и проверить будет ли выполнено условие микролокальности
Ефимова-обобщенная причинность для S-матрицы.

Более поподробнее про этот путь не могли бы рассказать?Будьте любезны.. :)

Дела давно минувших дней, преданья старины глубокой
http://data.ufn.ru//ufn74/ufn74_9/Russian/r749i.pdf
http://data.ufn.ru//ufn80/ufn80_1/Russian/r801f.pdf
http://urss.ru/cgi-bin/db.pl?cp=&lang=R ... ok&id=4058
http://urss.ru/cgi-bin/db.pl?cp=&page=B ... u&list=216
Вообще не советую этим заниматься.

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение22.04.2006, 06:04 
Заслуженный участник


15/05/05
3445
USA
Информация к размышлению.
Ранняя книга "Ефимов Г.В. Нелокальные взаимодействия квантованных полей. - М. Наука. 1977", есть в библиотеке Колхоза (http://lib.homelinux.org)

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение22.04.2006, 06:58 
Заблокирован
Аватара пользователя


18/01/06

3241
ЧЕРНАЯ ДЫРА МУМУ-ШВАРЦНЕГЕРА
Yuri Gendelman писал(а):
Информация к размышлению.
Ранняя книга "Ефимов Г.В. Нелокальные взаимодействия квантованных полей. - М. Наука. 1977", есть в библиотеке Колхоза (http://lib.homelinux.org)

:evil: А почему бы и нет :?: А что колхозы еще сохранились :?:

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение22.04.2006, 10:29 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Yuri Gendelman писал(а):
Информация к размышлению.
Ранняя книга "Ефимов Г.В. Нелокальные взаимодействия квантованных полей. - М. Наука. 1977", есть в библиотеке Колхоза (http://lib.homelinux.org)

Посмотрел...С моим подходом ничего общего!
Кстати,хочу опубликовать статью "К вопросу о фундаментальной длине".Где это лучше сделать?

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение22.04.2006, 10:32 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Аурелиано Буэндиа писал(а):
PSP писал(а):
Вопрос-не напоминает ли это решение картину квантовой механики?..

А чем именно оно должно напоминать? Вообще очень сложно что-либо сказать определенное. Нужны подробности относительно того что это за фундаментальная длина... нужен анализ решений для различных потенциалов (не только для U=0). Пока ничего удивительного не вижу.

А хотя бы то,что,похоже,на малых расстояниях свободная частица может двигаться по замкнутым траекториям...

 Профиль  
                  
 
 
Сообщение22.04.2006, 13:24 
Заслуженный участник


09/02/06
4397
Москва
Бред всё это. У Ефимова нормальная постановка, но так же не связано с фундаментальной длиной, а фактически сводится к тому, что элементарные частицы не являются точечными а распределёнными и учитывается этот факт в взаимодействиях.

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение22.04.2006, 17:21 
Заслуженный участник


15/05/05
3445
USA
Котофеич писал(а):
А что колхозы еще сохранились :?:

Сохранилась электронная библиотека одного колхоза.

 Профиль  
                  
 
 Re: К вопросу о фундаментальной длине...
Сообщение22.04.2006, 21:48 
Заблокирован
Аватара пользователя


18/01/06

3241
ЧЕРНАЯ ДЫРА МУМУ-ШВАРЦНЕГЕРА
PSP писал(а):
Yuri Gendelman писал(а):
Информация к размышлению.
Ранняя книга "Ефимов Г.В. Нелокальные взаимодействия квантованных полей. - М. Наука. 1977", есть в библиотеке Колхоза (http://lib.homelinux.org)

Посмотрел...С моим подходом ничего общего!
Кстати,хочу опубликовать статью "К вопросу о фундаментальной длине".Где это лучше сделать?

:evil: Это просто невозможно, заиметесь чем нибудь более современным.

 Профиль  
                  
 
 
Сообщение23.04.2006, 13:59 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Руст писал(а):
Бред всё это. У Ефимова нормальная постановка, но так же не связано с фундаментальной длиной, а фактически сводится к тому, что элементарные частицы не являются точечными а распределёнными и учитывается этот факт в взаимодействиях.

Да,это вселяет надежду,значит, в моём подходе что-то есть..

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 203 ]  На страницу 1, 2, 3, 4, 5 ... 14  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Igogor64


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group