Последний раз редактировалось sergey zhukov 18.12.2024, 09:45, всего редактировалось 9 раз(а).
peregoudov Прочитал Белла. Сначала он говорит о том, что эта простая задача была (с первого взгляда) неправильно решена многими знатоками теории. Потом они, конечно, исправились, но только после того, как убедились, что нить неограниченно растягивается в СО, связанной с задней ракетой. И это при том, говорит Белл, что правильный ответ должен быть даже еще более очевиден в ИСО. Т.е. Белл тут говорит не о том, что "парадокс: там порвется, а тут - нет", а о том, что вывод о разрыве легче сделать прямо в ИСО, не переходя в СО задней ракеты. Т.е. люди, которых обучили СТО правильно (с точки зрения Белла) с ходу дали бы правильный ответ.
Далее он рассматривает разницу в подходах Лоренца и Эйнштейна. Это вопрос интересный. Я тут где-то на форуме уже писал о том, что этот момент действительно замалчивается при обучении СТО. Лоренц полагал, что некоторая покоящаяся система отсчета существует, а во всех движущихся относительно нее системы отсчета происходят такие изменения, который полностью маскируют от движущегося наблюдателя факт собственного движения. Эйнштейн же просто принял "ненаблюдаемое = несуществующее" и принял постулат полного равноправия всех ИСО. Белл говорит, что неплохо было-бы сначала научится рассуждать, как Лоренц, а уже потом изучать точку зрения Эйнштейна. Для тех, кто рассуждает по Лоренцу, задача про нить не является сложной, говорит он. В ИСО для них существует простая причина ее разрыва, не нужно никуда переходить.
Я тоже так думаю. Неплохо бы сначала рассмотреть подход Лоренца в неподвижномм эфире, затем - в потоке эфира, который "дует" с заданной скоростью в направлении/против направления движения. Затем в потоке эфира, который дует перпендикулярно движению. Затем - вообще в произвольно направленном потоке эфира. Убедится, что хотя мы принимаем разные ненаблюдаемые скорости и направления эфира, мы всегда получаем одинаковые наблюдаемые результаты. И вот тогда уже сам собой придет вывод о том, что можно связывать наблюдаемые непосредственно между собой, а не с эфиром, который тут играет роль топора в каше. И тогда уже принимать точку зрения Эйнштейна. Да, это очень полезно для понимания СТО.
Т.е. можно сделать вывод о том, что эту задачу Белл приводит, как пример того, что люди, правильно обученные СТО, сразу решают ее правильно, а те, кто обучен "не с того конца", сразу не могут этого сделать и используют боле сложные рассуждения.
Кстати, Белл в примечаниях прямо говорит о том, что:
"Сильное ускорение может разорвать нить только из-за ее собственной инерции, в то время как скорости все еще не велики. Здесь интерес представляет не этот эффект. При щадящем ускорении разрыв происходит при достижении определенной скорости, в зависимости от степени, в которой нить позволяет растягиваться сверх своей естественной длины". Это специально для тех написано, кто в этой задаче сразу начинает думать о волнах, рывках и пр.
|