В начале тема планировалась, как анонс к вероятностной теории чисел, отсюда название темы. Я разместил в первом сообщении литературу, сказал о предмете и в качестве примера привел действительную арифметическую функцию
, которая на указанном вероятностном пространстве может быть охарактеризована средним значением, дисперсией и функцией распределения.
Потом я подумал, что раздел дискуссионный и вынес на обсуждение вопрос, в каких случаях
может иметь предельное нормальное распределение. Я очень благодарен
mihaild, который принимает участие в теме. Этот вопрос ранее не обсуждался, поэтому мы вступили на "не паханное минное поле". Возможны ошибки. Прошу не судить строго.
Выяснили, что в случае, когда
является неограниченной монотонной, то она вообще не имеет предельного распределения. Тогда я предложил рассмотреть другую арифметическую функцию - количество простых делителей натурального
-
. Эта арифметическая функция также является неограниченной, но не является монотонной, так как существенно колеблется около своего среднего значения. Я привел теорему Эрдеша-Каца, по которой нормализованная величина от
имеет предельным стандартное нормальное распределение.
Представляет интерес рассмотрение вопроса, в каких случаях действительная арифметическая функция имеет предельным нормальное распределение? Я думаю это может быть тогда (и этот подход вполне соответствует вероятностной теории чисел), когда действительная арифметическая функция на указанном вероятностном пространстве может быть представлена, как сумма слабо зависимых или независимых случайных величин, подпадающих под Центральную предельную теорему.