А какое возражение против метрики Вайдья Вы выдвигали?
Никакое. Она описывает метрику для звезды, испускающей газ фотонов, отчего масса, действующая на наблюдателя, уменьшается. Тривиальный случай, не имеющий отношение к антигравитации и рассматриваемой нами задаче.
Nick Gorkavyi, так у вас масса ваша переменная как-то размазана по всей вселенной или сосредоточена в ограниченной области?
Ограничена в компактной области, гораздо меньшей, чем расстояние до наблюдателя - это учитывается при интегрировании по объему вот в этом интеграле:
(1)
где
.
В удаленности переменной массы - вся соль. Если мы имеем дело с метрикой Вайдья или со случаем падения наблюдателя к центру Земли, то там тоже гравитирующая масса, действующая на наблюдателя, будет меняться, но это изменение не будет запаздывающим: наблюдатель узнает об изменении массы в то же мгновение, когда это изменение происходит. И тогда это изменение будет описываться первым членом справа, то есть просто уменьшающимся ньютоном:
Если же переменная масса удалена, то наблюдатель получает сигнал об этом с релятивистским опозданием - и это порождает дополнительную зависимость наблюдаемой гравитационной массы от расстояния, что и вызывает появление принципиально нового слагаемого, которое зависит от скорости света и может описывать как антигравитацию, так и гравитацию. Это я сейчас такой умный, но в свое время я долго ломал голову - почему эти два случая уменьшающейся массы так различны. Кутчера, кстати, этого не понял, и мы его поправили. В книжке это все детально описано.
Nick Gorkavyi, не беда, проверить удовлетворяются ли уравнения ОТО - минутное дело (у меня программа на Wolfram Mathematica). Давайте сюда ваш
, я быстренько проверю с ним.
Это было бы интересно.
Но здесь функция
не может быть определена из уравнений Эйнштейна, ее надо определять из других соображений - как в случае уравнение состояния материи. Я обычно использую экспоненциальную функцию.