2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8  След.
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:24 
Аватара пользователя


08/01/18
138
Москва
dgwuqtj в сообщении #1642261 писал(а):
siago, а для вас канторово множество должно быть дискретным или непрерывным? У него не дискретная топология, даже нет изолированных точек (как у, скажем, $\{0, 1, 1/2, 1/3, 1/4, \ldots\}$), но при этом оно вполне несвязно.

Я собственно начал тему с того, что мне не понятно выражение "непрерывное множество" или "прямая состоит из точек" и т.п. Канторово множество очевидно дискретно, так как состоит из дискретных элементов.
Но ваш вопрос можно перефразировать так: можно ли в канторовом множестве выделить непрерывные элементы. Я полагаю, что этого сделать не удастся, поскольку алгоритм его задания направлен на их разделение или дискретизацию.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:27 
Заслуженный участник
Аватара пользователя


20/08/14
8602
EminentVictorians в сообщении #1642283 писал(а):
Сомневаться полезно.
Munin в сообщении #1109950 писал(а):
Есть сомнительность разного рода: одна для недоверчивых невежд, другая для придирчивых специалистов.
Прежде чем осмыслять математику, ее надо выучить. Одно дело освоить стандартный курс теории множеств и математической логики и уже после этого спросить: "Удовлетворен ли я стандартным ответом на вопрос, что такое число?". Совсем другое дело - не зная понятия линейного порядка, определения непрерывной функции и не понимая даже записи $f \colon \mathbb Z \to \mathbb Z$, начать измышлять гипотезы, что такое число и из чего состоит отрезок. Второе - верный путь к выдумыванию наивной ерунды.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:27 
Аватара пользователя


08/01/18
138
Москва
Dan B-Yallay в сообщении #1642266 писал(а):
siago в сообщении #1642264 писал(а):
Это я считаю результатом пренебрежения философией - наукой рассуждать.
Софистика полезла...

С чего этого вам вздумалось личное мнение выдавать за софистику? Вы хоть понимаете, что это такое?

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:29 
Заслуженный участник


23/05/19
1214
siago
Уууу, теперь еще и какие-то "дискретные/непрерывные элементы" появились:)
Вы начнете уже приводить определения тем словам, которые используете? Помнится, Вы обещали это сделать вечером, когда доберетесь до учебника. Так что там?

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:32 
Аватара пользователя


08/01/18
138
Москва
skobar в сообщении #1642270 писал(а):
Вы не сможете разговаривать с математиками, пока не осилите хотя бы азы теории множеств и топологии

Спасибо, конечно, за рекомендацию, считаю её вполне уместной, однако даже боги с людьми разговаривали.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:33 
Админ форума


02/02/19
2625
 ! 
siago в сообщении #1642287 писал(а):
С чего этого вам вздумалось личное мнение выдавать за софистику? Вы хоть понимаете, что это такое?
Здесь все понимают, что такое софистика. И в этой теме все, кроме Вас, владеют теми математическими понятиями, в которых Вы пытаетесь разобраться. В этой теме Вы просите о помощи, а Вам ее оказывают. Так что будьте любезны вести себя вежливо.


 !  Также советую (всем участникам) не отвлекаться на обсуждение физики и философии. Вопрос чисто математический, все остальное - оффтоп.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:37 
Аватара пользователя


08/01/18
138
Москва
mihaild в сообщении #1642277 писал(а):
siago в сообщении #1642272 писал(а):
Да, знаю
Ну так и в чем вопрос?

Как линию можно считать множеством (чего бы то ни было )?
PS. Поясню, в чем моё непонимание. Линия образована непрерывнвм изменением, а не добавлением дискретных элементов, коими являются точки. Если утверждать обратное, то назовите два любых последовательных элемента.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:41 


04/06/24
114
Кстати, в математике есть строгое определение вещественных чисел - это полное (линейно) упорядоченное поле. Но опять же, просто чтобы понять это определение требуется предварительно осилить основы теории множеств и кое-что из алгебры.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:45 
Заслуженный участник
Аватара пользователя


16/07/14
9202
Цюрих
siago в сообщении #1642291 писал(а):
Как линию можно считать множеством (чего бы то ни было )?
Что значит "как считать"? По определению, линия - множество точек. Что значит "считать что-то чем-то"?
skobar в сообщении #1642292 писал(а):
определение вещественных чисел - это полное (линейно) упорядоченное поле
Еще архимедово. Иначе разные варианты бывают.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 00:56 
Заслуженный участник


07/08/23
1162
siago в сообщении #1642285 писал(а):
Канторово множество очевидно дискретно, так как состоит из дискретных элементов.

Да ну? В нём континуум элементов, их перечислить невозможно в принципе. Так же, как и числа на отрезке. И они там не изолированы ни в каком смысле, опять же. Оно не получается "добавлением дискретных элементов" при помощи какого-то алгоритма. Последовательных элементов в нём вы тоже не сможете предъявить. Там есть, конечно, точки вида $1/3$, после которых некоторый пробел, ну так и у отрезка есть два конца.

Если что, стандартное построение канторова множества — это пересечение последовательности из наборов отрезков, то есть по сути выкидывание кучи интервалов из отрезка. Это не задание множества уравнением (как прямой на плоскости) и не задание перечислением.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 01:23 


04/06/24
114
mihaild в сообщении #1642293 писал(а):
skobar в сообщении #1642292 писал(а):
определение вещественных чисел - это полное (линейно) упорядоченное поле
Еще архимедово. Иначе разные варианты бывают.

Архимедово свойство добавлять в определение - это лишнее. Оно выводится из полноты.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 01:40 
Заслуженный участник
Аватара пользователя


16/07/14
9202
Цюрих
skobar в сообщении #1642300 писал(а):
Оно выводится из полноты
Из полноты по Дедекинду. Из полноты по Коши не выводится.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 01:42 
Заслуженный участник
Аватара пользователя


11/12/05
10078
siago в сообщении #1642291 писал(а):
PS. Поясню, в чем моё непонимание. Линия образована непрерывнвм изменением, а не добавлением дискретных элементов, коими являются точки.
Представим плоскость и две различные точки на ней. Через эти 2 точки согласно аксиом Гильберта проходит единственная прямая линия. Укажите: каким еще таким "непрерывным изменением" эта линия образована?

siago в сообщении #1642291 писал(а):
Если утверждать обратное, то назовите два любых последовательных элемента.
Вы в курсе, что прибегаете к ложной дихотомии?

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 01:59 


04/06/24
114
mihaild в сообщении #1642301 писал(а):
skobar в сообщении #1642300 писал(а):
Оно выводится из полноты
Из полноты по Дедекинду. Из полноты по Коши не выводится.

Есть несколько стандартных эквивалентных определений полноты упорядоченного поля, и свойство Архимеда, естественно, выводится из каждого из них. Как сейчас помню, ещё в школе давали следующий вариант определения:

У любых двух непустых подмножеств, одно из которых левее другого, существует разделяющий элемент.

Если свойство Архимеда не выполнено, это не полное упорядоченное поле.

 Профиль  
                  
 
 Re: Дискретное и непрерывное
Сообщение12.06.2024, 02:36 
Аватара пользователя


01/12/06
760
рм
siago в сообщении #1642268 писал(а):
Я склонен полагать, что на отрезке можно выделить точку в любом месте, а вот что он состоит из точек, у меня под большим вопросом.
В геометрии Евклида есть теорема: Точки, расположенные по одну сторону от данной прямой на одном и том же расстоянии, образуют прямую. Значит любой отрезок на этой прямой состоит из некоторых таких точек.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 119 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group