Отрицательные числа используются, например, в электростатике для подсчёта потенциала электрического поля от отрицательного заряда. Там принцип суперпозиции и в задачах может быть сложение нескольких отрицательных и положительных чисел, а результат может быть как положительным так и отрицательным числом. Поэтому, сложение отрицательных чисел становится интуитивно понятным из подобных примеров. Но умножение - нет. Продолжите ряд:



... Что следующее?

Более того, правило

"ломает" область определения степенной функции

. Эта функция считается определенной для

, если

действительное число.
Тем не менее, мы выбираем именно такое определение, чтобы сохранить коммутативный и дистрибутивный закон, сохранить возможность выноса общего множителя за скобки и т.п., потому что для нас важнее удобство сложения/вычитания.
А если нам где-то понадобится график

, для отрицательного основания, чтобы он вёл себя симметрично как для положительного основания, то мы просто делаем так

Вывод. Определение правила умножения отрицательных чисел введено из соображений удобств. Его плюсы это сохранения законов сложения и умножения с расширением области определения в сторону

для общих алгебраических выражений, содержащих четыре основные арифметические операции. Это даёт удобство вычислений, не нужно следить за областью определения и для разных областей производить разные расчёты. Минус в том, что область определения степенной функции становится неопределённой для отрицательного основания, подробнее в
вики.