Для симметричных кортежей нечётной длины (не уверен насчёт самого короткого) - да, там же требование одинакового остатка по модулю 6 для всех чисел паттерна вылезает, так что
.
На самом деле меньше: не все числа кратные 6 можно добавить в паттерн 19-252, некоторые комбинации оказываются запрещёнными по разным модулям. Например добавить 18 и 24 нельзя по модулю 5, а 18 и 36 по модулю 11.
В какой-то теме
gris я год назад показывал какие цепочки диаметром 252 встречаются до 1e11, повторю про последнюю встреченную длину:
99852437299: [0, 10, 24, 28, 30, 40, 58, 60, 72, 82, 90, 94, 108, 132, 138, 168, 174, 180, 192, 198, 208, 214, 228, 240, 244, 252], len=26
98996552341: [0, 36, 40, 42, 52, 58, 82, 88, 100, 108, 112, 136, 150, 156, 162, 166, 168, 172, 186, 190, 192, 220, 228, 232, 238, 240, 252], len=27
89638536077: [0, 2, 6, 12, 24, 32, 44, 54, 60, 72, 74, 84, 102, 104, 110, 114, 116, 122, 132, 150, 156, 180, 182, 186, 194, 216, 230, 252], len=28
62448173849: [0, 8, 12, 20, 24, 68, 78, 80, 84, 90, 92, 98, 102, 110, 120, 122, 138, 140, 150, 162, 194, 200, 210, 218, 222, 230, 242, 248, 252], len=29
70872264271: [0, 6, 12, 18, 22, 30, 42, 48, 58, 70, 72, 76, 96, 100, 102, 112, 118, 120, 132, 160, 172, 180, 186, 202, 208, 228, 232, 238, 246, 252], len=30
5803841: [0, 8, 18, 26, 36, 38, 42, 50, 60, 66, 86, 92, 96, 98, 102, 110, 120, 128, 138, 150, 158, 176, 182, 192, 200, 212, 218, 228, 240, 246, 252], len=31
1219639: [0, 4, 10, 12, 18, 24, 40, 64, 78, 82, 88, 100, 108, 114, 124, 144, 148, 150, 154, 168, 172, 192, 198, 204, 208, 210, 220, 222, 232, 238, 240, 252], len=32
112921: [0, 6, 18, 30, 46, 58, 76, 90, 96, 100, 102, 106, 118, 120, 130, 142, 160, 162, 168, 172, 190, 196, 202, 210, 222, 226, 228, 232, 238, 240, 246, 250, 252], len=33
8597: [0, 2, 12, 26, 30, 32, 44, 50, 66, 72, 80, 84, 92, 96, 102, 110, 116, 122, 134, 140, 144, 150, 156, 164, 182, 186, 206, 210, 222, 224, 234, 240, 242, 252], len=34
7507: [0, 10, 16, 22, 30, 34, 40, 42, 52, 54, 66, 70, 76, 82, 84, 96, 100, 114, 132, 136, 142, 162, 166, 174, 180, 184, 192, 196, 210, 216, 220, 234, 246, 250, 252], len=35
7451: [0, 6, 8, 26, 30, 36, 38, 48, 56, 66, 72, 78, 86, 90, 96, 98, 108, 110, 122, 126, 132, 138, 140, 152, 156, 170, 188, 192, 198, 218, 222, 230, 236, 240, 248, 252], len=36
2591: [0, 2, 18, 26, 30, 42, 56, 66, 68, 72, 80, 86, 92, 96, 98, 102, 108, 116, 120, 122, 128, 138, 140, 150, 158, 162, 176, 186, 198, 200, 206, 210, 212, 228, 242, 246, 252], len=37
2657: [0, 2, 6, 14, 20, 26, 30, 32, 36, 42, 50, 54, 56, 62, 72, 74, 84, 92, 96, 110, 120, 132, 134, 140, 144, 146, 162, 176, 180, 186, 194, 200, 204, 222, 230, 240, 246, 252], len=38
877: [0, 4, 6, 10, 30, 34, 42, 52, 60, 64, 70, 76, 90, 94, 100, 106, 114, 120, 132, 136, 142, 144, 154, 156, 162, 172, 174, 184, 186, 192, 210, 214, 216, 220, 226, 232, 240, 246, 252], len=39
Остальные более длинные все ещё ниже.
Отдельно забавно что длин 47 и 49 не встретилось вообще.
С другой стороны есть теорема о бесконечности вхождений любой прогрессии простых чисел, в частности любых допустимых паттернов, так что где-то далеко-далеко
и не в нашей галактике вполне могут и должны встретиться повторы почти всех этих паттернов (не проверял их на допустимость, вдруг какой-то строго единственен).
Из больших примеров ("похожие" на 19-252 и до 1e24) как уже говорил обнаружил лишь несколько длиной 26 и один 28.
А числовые примеры есть? Я не говорю про 51, хотя бы 44.
Есть лишь такой последний:
227: [0, 2, 6, 12, 14, 24, 30, 36, 42, 44, 50, 54, 56, 66, 80, 84, 86, 90, 104, 110, 120, 122, 126, 132, 140, 146, 152, 156, 162, 170, 174, 182, 192, 194, 204, 206, 212, 216, 222, 230, 234, 236, 240, 252], len=44
Но он вполне себе допустим по всем остаткам и потому должен встретиться и когда-нибудь ещё (причём бесконечное число раз).
-- 12.02.2024, 14:04 --Или надо симметричный?
Симметричный длиной 19 имеет минимальный диаметр 252 и соответственно длиннее с тем же диаметром быть ну никак не может. Минимальный диаметр симметричного длиной 21 уже 324, не 252.
-- 12.02.2024, 14:06 --grisНеужели это такой прям великий труд убрать
лишние переносы строк?