Давайте на примере - школьная тригономертия. Синусы и косинусы - это фильтрация сигналов, и основа вейвлет-теории для анализа временных рядов, расчеты электрических цепей и т.д. Но у школоло не может быть нужного бэкграунда, чтобы все это понять. Он видит перед собой гавкающую уродливую училку красивую аспирантку с мягким голосом, бегающую вокруг непонятно зачем существующего на доске и в природе набора символов
. Откуда возмется интерес?
Тригонометрия может быть интересна связью с геометрией. В том смысле, что тригонометрия дает язык для формулировки очень лаконичных и сильных теорем, типа теоремы синусов или косинусов. Сама по себе концепция "решения треугольников" довольно приятна своей универсальностью и простотой.
По поводу школьной программы вообще отдельный разговор. Я когда учился в школе, очень любил различные текстовые и "практические" задачи (поэтому, я нормально относился, в частности, к геометрии). Так что у меня не было проблемы с мотивацией - я учил те же символьные преобразования чтобы использовать их в геометрии или в текстовых задачах. Я даже могу привести характерный пример. У меня так получилось, что я решал какую-то задачу и самостоятельно вышел на квадратное уравнение. Как его решать - я не знал. Крутил его и так и этак. После всех этих телодвижений, у меня получилось самостоятельно нагуглить о факте существования такого класса уравнений и я сам освоил способ их решения. Очень этому рад был, кстати. Было ощущение, что море по колено и я сейчас смогу кучу текстовых задач нарешать
Удовольствие должно быть перед и после, но не во время.
Да с чего бы? Тоже история. У Маклейна в первых главах книги есть параграф о категориях с конечными произведениями. Когда я его читал в первый раз, я вообще не понял, в чем прикол. Потом я посмотрел в упражнения, там были нарисованы какие-то дикие диаграммы, и я просто решил забить. "Потом прочитаю и пойму", подумал я. И забыл о том параграфе. Потом, где-то через пол года я занимался другими вещами - линейной алгеброй (я там доказывал, что если моноидальная категория достаточно хорошая, т.е. замкнутая + симметрическая + кополная, то забывающий функтор из категории ее моноидальных объектов в нее саму будет иметь левый сопряженный). Ну и в процессе меня осенило. Я подумал: "Так ведь любая категория с бинарными произведениями и терминальным объектом будет моноидальной! Я даже знаю, чем будет являться ассоциатор!". Я был очень рад, причем прямо в процессе доказательства этого факта про категории с бинарными произведениями. Вот прямо непосредственно в моменте занятий математикой. А тот параграф, который был совершенно диким при первом чтении, оказался по итогу абсолютно элементарным.
И таких историй было полным полно. Был случай с учебником Винберга, глава о группах. Я даже писал об этом в теме "Что Вас потрясло в математике".
Сегодня читал у Маклейна про категории функторов. Там был пример с моноидом
(категорией с единственным объектом) и категорией
(категорией функторов из
в
). Я начинаю читать строчку: "Если
- моноид... ", останавливаюсь на слове "моноид", чтобы воспроизвести в уме оставшийся абзац, а затем сравнить с текстом. Сразу пришла в голову мысль: "рассмотрю ка я вместо моноида сначала группу, а потом уже моноид". Все легко: под группой
подразумевается категория с одним объектом, где все стрелки обратимы (категории, где все стрелки обратимы, называются группоидами). Рассмотрим вместо
категорию с теми же объектами, но вместо стрелок будем брать не любые функции между множествами, а только биекции (не знаю, как эту категорию обозначить, пусть будет
). Первая радость: функтор из
в
- это действие группы
на множестве
- образе этого функтора! Значит категория функторов
будет состоять из действий группы
- очень неплохо. Стрелками будут естественные преобразования действий. Раз в
у нас только биекции, значит и естественные преобразования - биективные функции. Хочется назвать стрелки в
"изоморфизмами действий". Ловлю себя на мысли, что такое словосочетание я где-то уже слышал. Полез в "Курс алгебры" Винберга в параграф о действиях групп. Читаю и офигеваю - там как раз написано об эквивариантных отображениях и изоморфизмах действий. Весь этот сюжет для меня поразительный, но самое поразительное в другом. Эти эквивариантные отображения (когда я их читал у Винберга) заняли в моем личном рейтинге первую строчку в списке самых неестественных конструкций из теории групп (да и из всей алгебры). Я без преувеличения несколько дней безуспешно пытался осознать ту страницу у Винберга и каждый раз бросал с мыслью: "Какая же все это искусственная дичь". По итогу кстати так ничего и не осознал и никогда бы не вспомнил, если бы меня попросили воспроизвести ту страницу по памяти. Но сейчас, когда я понял категорную интерпретацию этой темы, я могу сказать, что это максимально естественные объекты. И сейчас они занимают первые строчки уже в другом моем рейтинге - самых приятных конструкций. Наверное в этом и заключается самая большая радость в математике - ловить такие взлеты после казалось бы мертвых падений.
Вот скажите, будь я студентом, правильно было бы задалбывать меня этим неудачным параграфом из Винберга и требовать знания от зубов про эти эквивариантные отображения? Или лучше дать мне время, чтобы я сам в тихой спокойной обстановке все бы понял так как надо, и без прессинга со стороны?