KevshСовет: опасайтесь картинок с сайтов, их никто толком не проверяет, и там велика вероятность ошибок. На упомянутой Вами картинке квадратурного демодулятора отсутствует ФНЧ, это принципиальная ошибка. Читайте солидно изданные книги. (Конечно, даже в самых хороших книгах встречаются ошибки или опечатки, но их там не так много, потому что текст книги рецензируют специалисты и тщательно корректирует автор по ходу подготовки к печати. При этом выкладки в книгах тоже не стоит слепо брать на веру; если изучаете важный для Вас сюжет, то всё, что можете, надо в нём проверять и выводить самостотельно.)
Вот блок-схема квадратурного демодулятора из упоминавшейся в этой ветке книги Сергиенко (для перехода к Вашим обозначениям считайте, что на этом рисунке величина
это
величина
это
Обратите там внимание на присутствие ФНЧ. Хоть мы и топчемся на одном месте, - ведь всё нужное уже было сказано на первой странице ветки, - давайте предельно спокойно и внимательно просмотрим выкладки ещё раз.
Итак, Вы правильно пишете, что входной высокочастотный (с несущей частотой
действительный сигнал, который надо квадратурно демодулировать, есть
.
Обозначим здесь фазу буквой фи:
Тогда выражение для того же самого сигнала будет, как Вы и пишете, с "минус фи" под знаком косинуса:
.
Теперь, согласно формуле Эйлера,
перепишем имеющийся здесь косинус в виде суммы двух экспонент с противоположными показателями и c амплитудным множителем
.
Приступим к математическому описанию первого этапа квадратурной демодуляции. Этот этап - "перенос центра спектра сигнала на нулевую промежуточную частоту" двумя смесителями-перемножителями. Опишем это преобразование сигнала, которое выполняют два смесителя (два перемножителя входного сигнала с двумя сигналами гетеродина, пропорциональными
и
как умножение входного сигнала
на комплексную экспоненту
Вот, смотрите, что у нас получается (пока ещё до того, как оно затем пройдёт через ФНЧ):
.
Обратите внимание: в показателе второй экспоненты теперь содержится удвоенная частота несущей, т.е. эта экспонента описывает даже ещё более высокочастотные колебания, чем исходный высокочастотный сигнал.
И вот, наконец, на втором этапе демодуляции получившийся таким образом комплексный сигнал
проходит через ФНЧ, обязательно имеющийся в квадратурном демодуляторе. У этого фильтра частота среза выбрана так, что он почти не пропускает на выход никакие высокочастотные составляющие, а пропускает на выход только постоянный ток (ну или напряжение) и низкие частоты, содержащиеся в спектре довольно-таки медленно меняющихся во времени функций
Реальный фильтр низких частот сильно ослабляет - уменьшает по амплитуде - высокочастотные сигналы (и заодно чуть-чуть изменяет амплитуду низкочастотных составляющих; не нарочно, а так уж получается: не идеальная у него амплитудно-частотная характеристика). Но в упрощённом идеализированном описании можно полагать, что ФНЧ вообще не пропускает на выход высокие частоты (уменьшает их амплитуду до нуля) и совсем не портит амплитуду и фазу низкочастотных компонент сигнала. Математически это означает в нашем примере, что идеальный ФНЧ умножает на ноль высокочастотную экспоненту, и не изменяет (т.е.умножает на единицу) низкочастотную экспоненту. Поэтому на выходе ФНЧ у нас остаётся вместо двух слагаемых только одно, низкочастотное:
Добавлю пояснения о множителе
Вы говорили, что его присутствие представляется Вам странным. На самом деле, здесь на этот множитель вообще не надо обращать внимания, потому что вместо него правильнее было бы написать какое-то другое число, зависящее от конструкции, - умноженную на
относительную амплитуду
генератора (гетеродина) сигнала
на который в квадратурном смесителе умножается входной сигнал
Для простоты выкладок мы положили эту амплитуду равной единице, и поэтому в ответе вышла
Если мы бы выбрали амплитуду гетеродина вдвое большей,
то множителя
не было бы. Главное в ответе не этот не зависящий от времени "конструкционный" множитель, а зависящая от амплитуды и фазы входного сигнала функция времени, в которой закодированы передаваемые сообщения:
Значения этой комплексной величины в определённые моменты времени изображаются точками на комплексной плоскости.