2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5  След.
 
 Алгебра множеств
Сообщение29.07.2023, 17:43 


18/05/15
733
На множестве $\Omega=[0,1]\cap\mathbb{Q}$ задана система $\frak{S}$ подмножеств вида $[a,b]\cap\Omega, (a,b]\cap\Omega, [a,b)\cap\Omega, (a,b)\cap\Omega$, $0\leqslant a\leqslant b\leqslant 1$. На $\frak{S}$ задана функция $P$: $\forall A\in\frak{S}, P(A)=b-a$. Пусть $\mathcal{A}$ - минимальная алгебра над $\frak{S}$, т.е. любое $B\in\mathcal{A}$ есть конечная сумма непересекающихся множеств из $\frak{S}$. Функция $P$ продолжается на $\mathcal{A}$ по правилу: $P(B)=P(A_1)+...+P(A_n), \quad B=A_1+...+A_n, A_k\in\frak{S}$.

Mне нужно найти невозрастающую последовательность $A_1\supset A_2\supset...\supset A_n\supset... $ множеств из $\mathcal{A}$ такую, что $$\quad \bigcap_{n=1}^\infty A_n=\varnothing, \text{но} \lim_{n\to\infty}P(A_n) \neq 0.$$

Буду благодарен за подсказку. Правильнее было бы, наверное, спросить а существует ли такая последовательность вообще. Просто, точно известно, что $P$ не является счетно-аддититвной функцией на $\mathcal{A}$, а достаточным условием для того, чтобы мера на алгебре была счетно-аддитивной, является её непрерывность в нуле, т.е. для любой невозрастающей последовательности множеств $A_1, A_2,....$ с пустым пересечением $\lim P(A_n)= 0$.

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение29.07.2023, 22:31 
Заслуженный участник
Аватара пользователя


16/07/14
9216
Цюрих
Если $B \in \mathcal A$, $q \in B$, то будет ли $B \setminus \{q\} \in \mathcal A$?

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение30.07.2023, 07:41 


18/05/15
733
mihaild в сообщении #1603194 писал(а):
Если $B \in \mathcal A$, $q \in B$, то будет ли $B \setminus \{q\} \in \mathcal A$?

Будет, потому что $\{q\}\in \mathcal{A}$.

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение30.07.2023, 18:51 
Заслуженный участник
Аватара пользователя


16/07/14
9216
Цюрих
А теперь попробуйте выкидывать рациональные числа по одному.

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение30.07.2023, 20:33 


18/05/15
733
mihaild, спасибо! Если $B_n$ - множество, которое получается, если выбросить из $B_0$ $n$ точек, то $B_0\supset B_1\supset...\supset B_n$, $P(B_0)=P(B_n)+P(\{q_1\})+...+P(\{q_n\}) = P(B_n)$ для любого $n$, и при этом $$\bigcap_{n=0}^\infty B_n = \varnothing.$$ Надо как-то осмыслить это. Пока ясно только то, что на множестве вещественных чисел этот номер не пройдет.

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение30.07.2023, 21:05 
Заслуженный участник
Аватара пользователя


16/07/14
9216
Цюрих
ihq.pl в сообщении #1603297 писал(а):
Если $B_n$ - множество, которое получается, если выбросить из $B_0$ $n$ точек
Тут нужно чуть точнее, потому что если выкидывать просто произвольные точки, то пустота пересечения не гарантируется. Но идея правильная.

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение30.07.2023, 21:19 


18/05/15
733
mihaild в сообщении #1603301 писал(а):
если выкидывать просто произвольные точки, то пустота пересечения не гарантируется

Вряд-ли сходу смогу построить нужную последовательность, но интуитивно понятно, что пересечение может быть и не пустым.

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение04.08.2023, 11:23 


18/05/15
733
mihaild
В электронной версии учебника Вероятность-I, Ширяев на стр. 175 есть

Определение 2. Пусть $\Omega$ - некоторое пространство. Система $\mathcal{P}$ подмножеств $\Omega$ называется $\pi$-системой, если она замкнута относительно взятия конечных пересечений.
Система $\mathcal{L}$ подмножеств $\Omega$ называется $\lambda$-системой, если

($\lambda_a$) $\Omega\in\mathcal{L}$,
($\lambda_b$) ($A,B\in\mathcal{L}$ и $A\subset B$) $\Rightarrow (B\setminus A\in\mathcal{L})$,
($\lambda_c$) ($A_n\in\mathcal{L}, n\in\mathbb{N}$ и $A_n\uparrow A$) $\Rightarrow (A\in\mathcal{L})$ (здесь $A_n\uparrow A$ значит $A_1\subset A_2\subset... $ и $A =\bigcup A_n$)

и

Замечание 2. Полезно отметить, что группа условий ($\lambda_a$), ($\lambda_a$), ($\lambda_a$), определяющая $\lambda$-систему, равносильна группе условий ($\lambda_a$), ($\lambda'_b$), ($\lambda'_c$), где
($\lambda'_b$) если $A\in\mathcal{L}$, то $\overline{A}\in\mathcal{L}$,
($\lambda'_c$) если $A_n\in\mathcal{L}, n\geqslant 1, A_n\cap A_m = \varnothing$, где $n\neq m$, то $\bigcap A_n \in \mathcal{L}$.

Вопрос: может, вместо $\bigcap A_n\in\mathcal{L}$ должно быть $\bigcup A_n\in\mathcal{L}$ ?

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение04.08.2023, 11:45 
Заслуженный участник
Аватара пользователя


16/07/14
9216
Цюрих
А какого года издание?
В любом случае да, опечатка. Брать пересечение дизъюнктных множеств странная идея.

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение04.08.2023, 12:00 


18/05/15
733
mihaild в сообщении #1603883 писал(а):
А какого года издание?

2004. А что вы думаете про это (на той же странице):

Теорема 2. Всякая $\pi$-$\lambda$-система $\mathcal{E}$ является $\sigma$-алгеброй.
Доказательство:... Чтобы теперь доказать, что $\mathcal{E}$ является также и $\sigma$-алгеброй, надо убедиться в том, что если множества $B_1, B_2,...$ принадлежат $\mathcal{E}$, то тогда и их объединение $\bigcup_nB_n$ тоже принадлежит $\mathcal{E}$. Положим $A_1=B_1$ и $A_n = B_n\cap\overline{A_1}\cap...\cap\overline{A_{n-1}}$. Тогда, согласно ($\lambda'_c$), $\bigcap A_n \in\mathcal{E}$. Но $\bigcap A_n=\bigcap B_n$, следовательно, и $\bigcap B_n\in\mathcal{E}$

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение04.08.2023, 12:09 
Заслуженный участник
Аватара пользователя


16/07/14
9216
Цюрих
Думаю что надо объяснить наборщику, что $\cap$ и $\cup$ - разные значки. И видимо что надо взять более старое издание.

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение04.08.2023, 13:35 


18/05/15
733
И не только это. Непонятен смысл обращения к $\lambda’_c$. Гораздо проще было бы обратиться к $\lambda_c$. Но вместо этого стали строить последовательность дизъюнктивных множеств, хотя в этом не было необходимости

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение13.08.2023, 13:41 


18/05/15
733
В гл.II, §2 определяется измеримое пространство $(R^\infty, \mathcal{B}(R^\infty))$. Здесь $R$ - числовая прямая, а $R^\infty=R\times R\times...$
Борелевская алгебра $\mathcal{B}(R^\infty)$ множеств из $R^\infty$ есть наименьшая $\sigma$-алгебра, содержащая "цилиндры" одного из следующих типов:
$$\begin{equation}\mathcal{F}(I_1\times...\times I_2) = \{x: x= (x_1,x_2,...), x_1\in I_1,...,x_n\in I_n\},\end{equation}
\begin{equation}\mathcal{F}(B_1\times...\times B_2) = \{x: x= (x_1,x_2,...), x_1\in B_1,...,x_n\in B_n\},\end{equation} 
\begin{equation}\mathcal{F}(B^n) = \{x: x= (x_1,...,x_n)\in B^n\},\end{equation}$$ где $I_k$ и $B_k$ - соответственно интервал $(a_k,b_k)$ и борелевское множество $k$-ой числовой прямой, а $B^n$ - элемент борелевской алгебры $\mathcal{B}(R^n)$ множеств из $R^n$.

Все три множества (1), (2), (3) названы цилиндрами с основаниями $I_1\times...\times I_n$, $B_1\times...\times B_n$ и $B^n$. Вот, в связи с этим вопрос, не правильнее было бы определить цилиндр $\mathcal{F}(B^n)$ следующим образом $$\mathcal{F}(B^n) = \{x: x= (x_1,...,x_n,...), (x_1,...,x_n)\in B^n\}$$?

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение13.08.2023, 13:48 
Заслуженный участник
Аватара пользователя


16/07/14
9216
Цюрих
В издании 1957 года в третьем варианте нет значка $=$, там просто $\{x: (x_1, \ldots, x_n) \in B^n\}$. Но Ваш вариант тоже годится.

 Профиль  
                  
 
 Re: Алгебра множеств
Сообщение13.08.2023, 14:09 


18/05/15
733
mihaild, действительно.. спасибо)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 73 ]  На страницу 1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: epros


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group